Mon, 08 Feb 2016

16:00 - 17:00
L4

Pseudo-differential operators on Lie groups

Veronique Fischer
(University of Bath)
Abstract
In this talk, I will present some recent developments in the theory of pseudo-differential operators on Lie groups. First I will discuss why `reasonable' Lie groups are the interesting manifolds where one can develop global symbolic pseudo-differential calculi. I will also give a brief overview of the analysis in the context of Lie groups. I will conclude with some recent works developing pseudo-differential calculi on certain classes of Lie groups.
Thu, 04 Feb 2016
15:00
L4

Basic aspects of n-homological algebra

Peter Jorgensen
(Newcastle)
Abstract

Abstract: n-homological algebra was initiated by Iyama
via his notion of n-cluster tilting subcategories.
It was turned into an abstract theory by the definition
of n-abelian categories (Jasso) and (n+2)-angulated categories
(Geiss-Keller-Oppermann).
The talk explains some elementary aspects of these notions.
We also consider the special case of an n-representation finite algebra.
Such an algebra gives rise to an n-abelian
category which can be "derived" to an (n+2)-angulated category.
This case is particularly nice because it is
analogous to the classic relationship between
the module category and the derived category of a
hereditary algebra of finite representation type.
 

Mon, 15 Feb 2016
15:45
L6

The Curved Cartan Complex

Constantin Teleman
(Oxford)
Abstract

  
The Cartan model computes the equivariant cohomology of a smooth manifold X with 
differentiable action of a compact Lie group G, from the invariant functions on 
the Lie algebra with values in differential forms and a deformation of the de Rham 
differential. Before extracting invariants, the Cartan differential does not square 
to zero. Unrecognised was the fact that the full complex is a curved algebra, 
computing the quotient by G of the algebra of differential forms on X. This 
generates, for example, a gauged version of string topology. Another instance of 
the construction, applied to deformation quantisation of symplectic manifolds, 
gives the BRST construction of the symplectic quotient. Finally, the theory for a 
X point with an additional quadratic curving computes the representation category 
of the compact group G.

Tue, 26 Jan 2016

12:00 - 13:15
L4

Elliptic polylogarithms and string amplitudes

Dr Erik Panzer
(Oxford)
Abstract
Recent results showed that the low energy expansion of closed superstring amplitudes can be expressed in terms of

single-valued multiple elliptic polylogarithms. I will explain how these functions may be defined as iterated integrals on the torus and

sketch how they arise from Feynman integrals.
Wed, 20 Jan 2016

11:00 - 12:30
S2.37

Bieberbach's Theorems

Robert Kropholler
(Oxford)
Abstract
I will go through a proof of Bieberbach's theorems proving that a group acting cocompactly on Euclidean n-space has a subgroup consisting of n independent translations. Time permitting I will also prove that there is a bound on the number of such groups for each dimension n. I will assume very little requiring only a small amount of group theory and linear algebra for the proofs. 
Tue, 01 Mar 2016
14:30
L6

Ramsey Classes and Beyond

Jaroslav Nešetřil
(Charles University, Prague)
Abstract

Ramsey classes may be viewed as the top of the line of Ramsey properties. Classical and not so classical examples of Ramsey classes of finite structures were recently extended by many new examples which make the characterisation of Ramsey classes  realistic (and in many cases known). Particularly I will cover recent  joint work with J. Hubicka.
 

Tue, 23 Feb 2016
14:30
L6

Size Ramsey Numbers of Bounded-Degree Triangle-Free Graphs

Rajko Nenadov
(ETH Zurich)
Abstract

The size Ramsey number r'(H) of a graph H is the smallest number of edges in a graph G which is Ramsey with respect to H, that is, such that any 2-colouring of the edges of G contains a monochromatic copy of H. A famous result of Beck states that the size Ramsey number of the path with n vertices is at most bn for some fixed constant b > 0. An extension of this result to graphs of maximum degree ∆ was recently given by Kohayakawa, Rödl, Schacht and Szemerédi, who showed that there is a constant b > 0 depending only on ∆ such that if H is a graph with n vertices and maximum degree ∆ then r'(H) < bn^{2 - 1/∆} (log n)^{1/∆}. On the other hand, the only known lower-bound on the size Ramsey numbers of bounded-degree graphs is of order n (log n)^c for some constant c > 0, due to Rödl and Szemerédi.

Together with David Conlon, we make a small step towards improving the upper bound. In particular, we show that if H is a ∆-bounded-degree triangle-free graph then r'(H) < s(∆) n^{2 - 1/(∆ - 1/2)} polylog n. In this talk we discuss why 1/∆ is the natural "barrier" in the exponent and how we go around it, why we need the triangle-free condition and what are the limits of our approach.

Tue, 09 Feb 2016
14:30
L6

The Chromatic Number of Dense Random Graphs

Annika Heckel
(Oxford University)
Abstract

The chromatic number of the Erdős–Rényi random graph G(n,p) has been an intensely studied subject since at least the 1970s. A celebrated breakthrough by Bollobás in 1987 first established the asymptotic value of the chromatic number of G(n,1/2), and a considerable amount of effort has since been spent on refining Bollobás' approach, resulting in increasingly accurate bounds. Despite this, up until now there has been a gap of size O(1) in the denominator between the best known upper and lower bounds for the chromatic number of dense random graphs G(n,p) where p is constant. In contrast, much more is known in the sparse case.

In this talk, new upper and lower bounds for the chromatic number of G(n,p) where p is constant will be presented which match each other up to a term of size o(1) in the denominator. In particular, they narrow down the optimal colouring rate, defined as the average colour class size in a colouring with the minimum number of colours, to an interval of length o(1). These bounds were obtained through a careful application of the second moment method rather than a variant of Bollobás' method. Somewhat surprisingly, the behaviour of the chromatic number changes around p=1-1/e^2, with a different limiting effect being dominant below and above this value.

Tue, 16 Feb 2016
14:30
L6

Product-Free Subsets of the Alternating Group

Sean Eberhard
(Oxford University)
Abstract

There is an obvious product-free subset of the symmetric group of density 1/2, but what about the alternating group? An argument of Gowers shows that a product-free subset of the alternating group can have density at most n^(-1/3), but we only know examples of density n^(-1/2 + o(1)). We'll talk about why in fact n^(-1/2 + o(1)) is the right answer, why
Gowers's argument can't prove that, and how this all fits in with a more general 'product mixing' phenomenon. Our tools include some nonabelian Fourier analysis, a version of entropy subadditivity adapted to the symmetric group, and a concentration-of-measure result for rearrangements of inner products.

Subscribe to