Mon, 25 Apr 2016
14:15
L4

K-contact & Sasakian manifolds of dimension 5

Vicente Muñoz
(Universidad Complutense de Madrid)
Abstract

Sasakian manifolds are odd-dimensional counterparts of Kahler manifolds in even dimensions, 
with K-contact manifolds corresponding to symplectic manifolds. It is an interesting problem to find
obstructions for a closed manifold to admit such types of structures and in particular, to construct
K-contact manifolds which do not admit Sasakian structures. In the simply-connected case, the
hardest dimension is 5, where Kollar has found subtle obstructions to the existence of Sasakian 
structures, associated to the theory of algebraic surfaces.
In this talk, we develop methods to distinguish K-contact manifolds from Sasakian ones in 
dimension 5. In particular, we find the first example of a closed 5-manifold with first Betti number 0 which is K-contact but which carries no semi-regular Sasakian structure.

 (Joint work with J.A. Rojo and A. Tralle).

Tue, 10 May 2016

12:00 - 13:15
L4

Quantum corrections to Hawking radiation

Dr Hadi Godazgar
(Cambridge DAMTP)
Abstract

Black holes are one of the few available laboratories for testing theoretical ideas in fundamental physics. Since Hawking's result that they radiate a thermal spectrum, black holes have been regarded as thermodynamic objects with associated temperature, entropy, etc. While this is an extremely beautiful picture it has also lead to numerous puzzles. In this talk I will describe the two-loop correction to scalar correlation functions due to \phi^4 interactions and explain why this might have implications for our current view of semi-classical black holes.
 

Mon, 09 May 2016
16:00
C3

TBA

Vandita Patel
(Warwick University)
Thu, 16 Jun 2016

14:00 - 15:00
L5

Input-independent, optimal interpolatory model reduction: Moving from linear to nonlinear dynamics

Prof. Serkan Gugercin
(Virginia Tech)
Abstract

For linear dynamical systems, model reduction has achieved great success. In the case of linear dynamics,  we know how to construct, at a modest cost, (locally) optimalinput-independent reduced models; that is, reduced models that are uniformly good over all inputs having bounded energy. In addition, in some cases we can achieve this goal using only input/output data without a priori knowledge of internal  dynamics.  Even though model reduction has been successfully and effectively applied to nonlinear dynamical systems as well, in this setting,  bot the reduction process and the reduced models are input dependent and the high fidelity of the resulting approximation is generically restricted to the training input/data. In this talk, we will offer remedies to this situation.

 
First, we will  review  model reduction for linear systems by using rational interpolation as the underlying framework. The concept of transfer function will prove fundamental in this setting. Then, we will show how rational interpolation and transfer function concepts can be extended to nonlinear dynamics, specifically to bilinear systems and quadratic-in-state systems, allowing us to construct input-independent reduced models in this setting as well. Several numerical examples will be illustrated to support the discussion.
Thu, 12 May 2016

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Estimating the Largest Elements of a Matrix

Dr Sam Relton
(Manchester University)
Abstract


In many applications we need to find or estimate the $p \ge 1$ largest elements of a matrix, along with their locations. This is required for recommender systems used by Amazon and Netflix, link prediction in graphs, and in finding the most important links in a complex network, for example. 

Our algorithm uses only matrix vector products and is based upon a power method for mixed subordinate norms. We have obtained theoretical results on the convergence of this algorithm via a comparison with rook pivoting for the LU  decomposition. We have also improved the practicality of the algorithm by producing a blocked version iterating on $n \times t$ matrices, as opposed to vectors, where $t$ is a tunable parameter. For $p > 1$ we show how deflation can be used to improve the convergence of the algorithm. 

Finally, numerical experiments on both randomly generated matrices and real-life datasets (the latter for $A^TA$ and $e^A$) show how our algorithms can reliably estimate the largest elements of a matrix whilst obtaining considerable speedups when compared to forming the matrix explicitly: over 1000x in some cases.

Fri, 10 Jun 2016

16:00 - 17:00
L1

Owning a successful DPhil

Abstract
Wondering about how to organise your DPhil? How to make the most of your supervision meetings?

In this session we will explore these and other questions related to what makes a successful DPhil with help from faculty members, postdocs and DPhil students.

In the first half of the session Helen Byrne and Roger Heath-Brown will give short talks on their experiences as PhD students and supervisors. 

The second part of the session will be a panel discussion, and the panel will consist of Emily Cliff, Benjamin Green, Paul Taylor and Andrew Thompson. Senior faculty members will be kindly asked to leave the lecture theatre - to ensure that students feel comfortable with discussing their experiences with later year students and postdocs/research fellows without any senior faculty present.
 
At 5pm senior and junior faculty members, postdocs and students will reunite in the common room for the happy hour.

About the speakers and panel members:
Helen Byrne received her DPhil from Oxford under the supervision of John Norbury. She was a Professor of Applied Mathematics in Nottingham from 2003 to 2011, when she moved to Oxford where she is a Professor in Mathematical Biology.
Professor Helen Byrne
 
Roger Heath-Brown received his PhD from Cambridge under the supervision of Alan Baker. He moved to Oxford in 1979, where he has been a Professor of Pure Mathematics since 1999.
Roger Heath-Brown
 
Emily Cliff received her DPhil from Oxford in 2015 under the supervision of Kobi Kremnitzer, and she is now a postdoc in the Geometry and Representation Theory group.
No image
 
Benjamin Green and Paul Taylor are both fourth year DPhil students; Benjamin Green is a member of the Number Theory group,
No image
while Paul Taylor is in the Mathematical Biology group.
No image
 
Andrew Thompson received his PhD from the University of Edinburgh in 2012 under the supervision of Coralia Cartis and Jared Tanner, and he has been a Lecturer in Computational Mathematics at Oxford since 2014.
No image
 
Subscribe to