Quantative Hydrodynamic Limits of Stochastic Lattice Systems
Abstract
I will present a simple abstract quantitative method for proving the hydrodynamic limit of interacting particle systems on a lattice, both in the hyperbolic and parabolic scaling. In the latter case, the convergence rate is uniform in time. This "consistency-stability" approach combines a modulated Wasserstein-distance estimate comparing the law of the stochastic process to the local Gibbs measure, together with stability estimates à la Kruzhkov in weak distance, and consistency estimates exploiting the regularity of the limit solution. It avoids the use of “block estimates” and is self-contained. We apply it to the simple exclusion process, the zero range process, and the Ginzburg-Landau process with Kawasaki dynamics. This is a joint work with Daniel Marahrens and Angeliki Menegaki (IHES).
Knot projections in 3-manifolds other than the 3-sphere
Abstract
Knot projections for knots in the 3-sphere allow us to easily describe knots, compute invariants, enumerate all knots, manipulate them under Reidemister moves and feed them into a computer. One might hope for a similar representation of knots in general 3-manifolds. We will survey properties of knots in general 3-manifolds and discuss a proposed diagram-esque representation of them.
Amenable actions and groups
Abstract
Amenable actions are answering the question: "When can we prevent things like the Banach-Tarski Paradox happening?". It turns out that the most intuitive measure-theoretic sufficient condition is also necessary. We will briefly discuss the paradox, prove the equivalent conditions for amenability, give some ways of producing interesting examples of amenable groups and talk about amenable groups which can't be produced in these 'elementary' ways.
Teaser question: show that you can't decompose Z into finitely many pieces, which after rearrangement by translations make two copies of Z. (I.e. that you can't get the Banach-Tarski paradox on Z.)
Bieri-Neumann-Strebel invariants
Abstract
The aim is introducing the Bieri-Neumann-Strebel invariants and showing some computations. These are geometric invariants of abstract groups that capture information about the finite generation of kernels of abelian quotients.
CLTs for Pair Dependent Statistics of Circular Beta Ensembles
Abstract
In this talk, we give an overview of recent results on the fluctuation of the statistic $\sum_{i\neq j} f(L_N(\theta_i-\theta_j))$ for the Circular Beta Ensemble in the global, mesoscopic and local regimes. This work is morally related to Johansson's 1988 CLT for the linear statistic $\sum_i f(\theta_i)$ and Lambert's subsequent 2019 extension to the mesoscopic regime. The special case of the CUE ($\beta=2$) in the local regime $L_N=N$ is motivated by Montgomery's study of pair correlations of the rescaled zeros of the Riemann zeta function. Our techniques are of combinatorial nature for the CUE and analytical for $\beta\neq2$.
On systems of maximal quantum chaos
Note the unusual time and date
Abstract
A remarkable feature of chaos in many-body quantum systems is the existence of a bound on the quantum Lyapunov exponent. An important question is to understand what is special about maximally chaotic systems which saturate this bound. Here I will discuss a proposal for a `hydrodynamic' origin of chaos in such systems, and discuss hallmarks of maximally chaotic systems. In particular I will discuss how in maximally chaotic systems there is a suppression of exponential growth in commutator squares of generic few-body operators. This suppression appears to indicate that the nature of operator scrambling in maximally chaotic systems is fundamentally different to scrambling in non-maximally chaotic systems.
Towards practical estimation of Brenier maps
Abstract
Given two probability distributions in R^d, a transport map is a function which maps samples from one distribution into samples from the other. For absolutely continuous measures, Brenier proved a remarkable theorem identifying a unique canonical transport map, which is "monotone" in a suitable sense. We study the question of whether this map can be efficiently estimated from samples. The minimax rates for this problem were recently established by Hutter and Rigollet (2021), but the estimator they propose is computationally infeasible in dimensions greater than three. We propose two new estimators---one minimax optimal, one not---which are significantly more practical to compute and implement. The analysis of these estimators is based on new stability results for the optimal transport problem and its regularized variants. Based on joint work with Manole, Balakrishnan, and Wasserman and with Pooladian.
Why things don’t work — On the extended Smale's 9th and 18th problems (the limits of AI) and methodological barriers
Abstract
The alchemists wanted to create gold, Hilbert wanted an algorithm to solve Diophantine equations, researchers want to make deep learning robust in AI, MATLAB wants (but fails) to detect when it provides wrong solutions to linear programs etc. Why does one not succeed in so many of these fundamental cases? The reason is typically methodological barriers. The history of science is full of methodological barriers — reasons for why we never succeed in reaching certain goals. In many cases, this is due to the foundations of mathematics. We will present a new program on methodological barriers and foundations of mathematics, where — in this talk — we will focus on two basic problems: (1) The instability problem in deep learning: Why do researchers fail to produce stable neural networks in basic classification and computer vision problems that can easily be handled by humans — when one can prove that there exist stable and accurate neural networks? Moreover, AI algorithms can typically not detect when they are wrong, which becomes a serious issue when striving to create trustworthy AI. The problem is more general, as for example MATLAB's linprog routine is incapable of certifying correct solutions of basic linear programs. Thus, we’ll address the following question: (2) Why are algorithms (in AI and computations in general) incapable of determining when they are wrong? These questions are deeply connected to the extended Smale’s 9th and 18th problems on the list of mathematical problems for the 21st century.