Forthcoming events in this series


Tue, 03 Feb 2009

17:00 - 18:00
L2

tba

Steve Smith
(University of Illinois, Chicago)
Abstract
Tue, 27 Jan 2009

17:00 - 18:00
L2

Singular Soergel Bimodules

Geordie Williamson
(Oxford)
Abstract

To any Coxeter group (W,S) together with an appropriate representation on V one may associate various categories of "singular Soergel bimodules", which are certain bimodules over invariant subrings of

regular functions on V. I will discuss their definition, basic properties and explain how they categorify the associated Hecke algebras and their parabolic modules. I will also outline a motivation coming from geometry and (if time permits) an application in knot theory.

Tue, 20 Jan 2009

17:00 - 18:00
L2

Representation zeta functions of p-adic Lie groups

Benjamin Klopsch
(Royal Holloway)
Abstract

In a joint project with Christopher Voll, I have investigated the representation zeta functions of compact p-adic Lie groups. In my talk I will explain some of our results, e.g. the existence of functional equations in a suitable global setting, and discuss open problems. In particular, I will indicate how piecing together information about local zeta functions allows us to determine the precise abscissa of convergence for the representation zeta function of the arithmetic group SL3(Z).

Tue, 25 Nov 2008

17:00 - 18:00
L2

On the abstract images of profinite groups

Nikolay Nikolov
(Imperial College)
Abstract

I will discuss the following

Conjecture B: Finitely generated abstract images of profinite groups are finite.

I will explain how it relates to the width of words and conjugacy classes in finite groups. I will indicate a proof in the special case of 'non-universal' profinite groups and propose several directions for future work.

This conjecture arose in my discussions with various participants of a workshop in Blaubeuren in May 2007 for which I am grateful. (You know who you are!)

Tue, 04 Nov 2008

17:00 - 18:00
L2

Words

Dan Segal
(Oxford)
Tue, 27 May 2008

17:00 - 18:00
L1

On polyzeta values

Olivier Mathieu
(Université Lyon I)
Tue, 22 Apr 2008

17:00 - 18:00
L1

Totally Disconnected, Locally Compact Groups & Geometric Group Theory

Udo Baumgartner
(Newcastle)
Abstract

As a small step towards an understanding of the relationship of the two fields in the title, I will present a uniformness result for embeddings of finitely generated, virtually free groups as cocompact, discrete subgroups in totally disconnected, locally compact groups.

Tue, 04 Mar 2008

16:00 - 17:00
L1

Boundedly generated groups and small-cancellation method

Alex Muranov
(Lyon)
Abstract

A group is called boundedly generated if it is the product of a finite sequence of its cyclic subgroups. Bounded generation is a property possessed by finitely generated abelian groups and by some other linear groups.

Apparently it was not known before whether all boundedly generated groups are linear. Another question about such groups has also been open for a while: If a torsion-free group $G$ has a finite sequence of generators $a_1,\dotsc,a_n$ such that every element of $G$ can be written in a unique way as $a_1^{k_1}\dotsm a_n^{k_n}$, where $k_i\in\mathbb Z$, is it true then that $G$ is virtually polycyclic? (Vasiliy Bludov, Kourovka Notebook, 1995.)

Counterexamples to resolve these two questions have been constructed using small-cancellation method of combinatorial group theory. In particular boundedly generated simple groups have been constructed.

Tue, 12 Feb 2008

16:00 - 17:00
L1

Embeddings of families of rescaled graphs into Cayley graphs, examples of groups with exotic properties

Cornelia Drutu
(Oxford)
Abstract

I shall explain two ways of embedding families of rescaled graphs into Cayley graphs of groups. The first one allows to construct finitely generated groups with continuously many non-homeomorphic asymptotic cones (joint work with M. Sapir). Note that by a result of Shelah, Kramer, Tent and Thomas, under the Continuum Hypothesis, a finitely generated group can have at most continuously many non-isometric asymptotic cones.

The second way is less general, but it works for instance for families of Cayley graphs of finite groups that are expanders. It allows to construct finitely generated groups with (uniformly convex Banach space)-compression taking any value in [0,1], and with asymptotic dimension 2. In particular it gives the first example of a group uniformly embeddable in a Hilbert space with (uniformly convex Banach space)-compression zero. This is a joint work with G. Arzhantseva and M.Sapir.

Tue, 05 Feb 2008

16:00 - 17:00
L1

Cherednik algebras, Hilbert schemes and quantum hamiltonian reduction

Toby Stafford
(Manchester)
Abstract

Cherednik algebras (always of type A in this talk) are an intriguing class of algebras that have been used to answer questions in a range of different areas, including integrable systems, combinatorics and the (non)existence of crepant resolutions. A couple of years ago Iain Gordon and I proved that they form a non-commutative deformation of the Hilbert scheme of points in the plane. This can be used to obtain detailed information about the representation theory of these algebras.

In the first part of the talk I will survey some of these results. In the second part of the talk I will discuss recent work with Gordon and Victor Ginzburg. This shows that the approach of Gordon and myself is closely related to Gan and Ginzburg's quantum Hamiltonian reduction. This again has applications to representation theory; for example it can be used to prove the equidimensionality of characteristic varieties.