Forthcoming events in this series


Tue, 01 Mar 2011
17:00
L2

Bounding the residual finiteness of free groups (joint work with Francesco Matucci

Prof. Martin Kassabov
(Southampton)
Abstract

We analyze the question of the minimal index of a normal subgroup in a free group which does not contain a given element. Recent work by BouRabee-McReynolds and Rivin give estimates for the index. By using results on the length of shortest identities in finite simple groups we recover and improve polynomial upper and lower bounds for the order of the quotient. The bounds can be improved further if we assume that the element lies in the lower central series.

Tue, 22 Feb 2011
17:00
L2

`Nielsen equivalence of generating sets for surface groups.’

Lars Louder
(Oxford)
Abstract

I will prove that generating sets of surface groups are either reducible or Nielsen equivalent to standard generating sets, improving upon a theorem of Zieschang. Equivalently, Aut(F_n) acts transitively on Epi(F_n,S) when S is a surface group.

Tue, 08 Feb 2011
17:00
L2

On a conjecture of Moore

Dr Ehud Meir
(Newton Institute)
Abstract

Abstract:

this is joint work with Eli Aljadeff.

Let G be a group, H a finite index subgroup. Moore's conjecture says that under a certain condition on G and H (which we call the Moore's condition), a G-module M which is projective over H is projective over G. In other words- if we know that a module is ``almost projective'', then it is projective. In this talk we will survey cases in which the conjecture is known to be true. This includes the case in which the group G is finite and the case in which the group G has finite cohomological dimension.

As a generalization of these two cases, we shall present Kropholler's hierarchy LHF, and discuss the conjecture for groups in this hierarchy. In the case of finite groups and in the case of finite cohomological dimension groups, the conjecture is proved by the same finiteness argument. This argument is straightforward in the finite cohomological dimension case, and is a result of a theorem of Serre in case the group is finite. We will show that inside Kropholler's hierarchy the conjecture holds even though this finiteness condition might fail to hold.

We will also discuss some other cases in which the conjecture is known to be true (e.g. Thompson's group F).

Tue, 30 Nov 2010

17:00 - 18:00
L2

Geometry and dynamics of some word maps on SL(2, Fq)

Tatiana Bandman
(Bar-Ilan)
Abstract

I will speak about a geometric method, based on the classical trace map, for investigating word maps on groups PSL(2, q) and SL(2, q). In two different papers (with F. Grunewald, B. Kunyavskii, and Sh. Garion, F. Grunewald, respectively) this approach was applied to the following problems.

1. Description of Engel-like sequences of words in two variables which characterize finite

solvable groups. The original problem was reformulated in the language of verbal dynamical

systems on SL(2). This allowed us to explain the mechanism of the proofs for known

sequences and to obtain a method for producing more sequences of the same nature.

2. Investigation of the surjectivity of the word map defined by the n-th Engel word

[[[X, Y ], Y ], . . . , Y ] on the groups PSL(2, q) and SL(2, q). Proven was that for SL(2, q), this

map is surjective onto the subset SL(2, q) $\setminus$ {−id} $\subset$ SL(2, q) provided that q $\ge q_0(n)$ is

sufficiently large. If $n\le 4$ then the map was proven to be surjective for all PSL(2, q).

Tue, 19 Oct 2010

17:00 - 18:00
L2

Homological finiteness Bredon properties for groups

Desi Kochloukova
(UNICAMP)
Abstract

We discuss homological finiteness Bredon types FPm with respect to the class of finite subgroups and seperately with respect to the class of virtually cyclic subgroups. We will concentrate to the case of solubles groups and if the time allows to the case of generalized R. Thompson groups of type F. The results announced are joint work with Brita Nucinkis

(Southampton) and Conchita Martinez Perez (Zaragoza) and will appear in papers in Bulletin of LMS and Israel Journal of Mathematics.

Tue, 12 Oct 2010

17:00 - 18:00
L2

Duality for representations and quantum isogenies

Kevin McGerty
(Oxford)
Abstract

Recently Frenkel and Hernandez introduced a kind of "Langlands duality" for characters of semisimple Lie algebras. We will discuss a representation-theoretic interpretation of their duality using quantum analogues of exceptional isogenies. Time permitting we will also discuss a branching rule and relations to Littelmann paths.

Tue, 15 Jun 2010

17:00 - 18:00
L2

Bilinear Forms and Differential Forms under Field Extensions

Detlev Hoffmann
(Nottingham)
Abstract

An important problem in algebra is the study of algebraic objects

defined over fields and how they behave under field extensions,

for example the Brauer group of a field, Galois cohomology groups

over fields, Milnor K-theory of a field, or the Witt ring of bilinear

forms over

a field. Of particular interest is the determination

of the kernel of the restriction map when passing to a field extension.

We will give an overview over some known results concerning the

kernel of the restriction map from the Witt ring of a field to the

Witt ring of an extension field. Over fields of characteristic

not two, general results are rather sparse. In characteristic two,

we have a much more complete picture. In this talk, I will

explain the full solution to this problem for extensions that are

given by function fields of hypersurfaces over fields of

characteristic two. An important tool is the study of the

behaviour of differential forms over fields of positive

characteristic under field extensions. The result for

Witt rings in characteristic two then follows by applying earlier

results by Kato, Aravire-Baeza, and Laghribi. This is joint

work with Andrew Dolphin.

Tue, 01 Jun 2010

17:00 - 18:00
L2

The cluster category of Dynkin type $A_\infty$

Peter Jorgensen
(Newcastle)
Abstract

\ \ The cluster category of Dynkin type $A_\infty$ is a ubiquitous object with interesting properties, some of which will be explained in this talk.

\\

\ \ Let us denote the category by $\mathcal{D}$. Then $\mathcal{D}$ is a 2-Calabi-Yau triangulated category which can be defined in a standard way as an orbit category, but it is also the compact derived category $D^c(C^{∗}(S^2;k))$ of the singular cochain algebra $C^*(S^2;k)$ of the 2-sphere $S^{2}$. There is also a “universal” definition: $\mathcal{D}$ is the algebraic triangulated category generated by a 2-spherical object. It was proved by Keller, Yang, and Zhou that there is a unique such category.

\\

\ \ Just like cluster categories of finite quivers, $\mathcal{D}$ has many cluster tilting subcategories, with the crucial difference that in $\mathcal{D}$, the cluster tilting subcategories have infinitely many indecomposable objects, so do not correspond to cluster tilting objects.

\\

\ \ The talk will show how the cluster tilting subcategories have a rich combinatorial

structure: They can be parametrised by “triangulations of the $\infty$-gon”. These are certain maximal collections of non-crossing arcs between non-neighbouring integers.

\\

\ \ This will be used to show how to obtain a subcategory of $\mathcal{D}$ which has all the properties of a cluster tilting subcategory, except that it is not functorially finite. There will also be remarks on how $\mathcal{D}$ generalises the situation from Dynkin type $A_n$ , and how triangulations of the $\infty$-gon are new and interesting combinatorial objects.

Tue, 27 Apr 2010

17:00 - 18:00
L2

Hopf-Galois extensions and an exact sequence for H-Picard groups

Andrei Marcus
(Cluj)
Abstract

The topic of this talk is the representation theory of Hopf-Galois extensions. We consider the following questions.

Let H be a Hopf algebra, and A, B right H-comodule algebras. Assume that A and B are faithfully flat H-Galois extensions.

1. If A and B are Morita equivalent, does it follow that the subalgebras A^coH and B^coH of H-coinvariant elements are also Morita equivalent?

2. Conversely, if A^coH and B^coH are Morita equivalent, when does it follow that A and B are Morita equivalent?

As an application, we investigate H-Morita autoequivalences of the H-Galois extension A, introduce the concept of H-Picard group, and we establish an exact sequence linking the H-Picard group of A and

the Picard group of A^coH.(joint work with Stefaan Caenepeel)