Past Algebra Seminar

27 April 2010
17:00
Andrei Marcus
Abstract
The topic of this talk is the representation theory of Hopf-Galois extensions. We consider the following questions. Let H be a Hopf algebra, and A, B right H-comodule algebras. Assume that A and B are faithfully flat H-Galois extensions. 1. If A and B are Morita equivalent, does it follow that the subalgebras A^coH and B^coH of H-coinvariant elements are also Morita equivalent? 2. Conversely, if A^coH and B^coH are Morita equivalent, when does it follow that A and B are Morita equivalent? As an application, we investigate H-Morita autoequivalences of the H-Galois extension A, introduce the concept of H-Picard group, and we establish an exact sequence linking the H-Picard group of A and the Picard group of A^coH.(joint work with Stefaan Caenepeel)
16 February 2010
17:00
John Duncan
Abstract
\ \ In 1939 Rademacher derived a conditionally convergent series expression for the modular j-invariant, and used this expression---the first Rademacher sum---to verify its modular invariance. We may attach Rademacher sums to other discrete groups of isometries of the hyperbolic plane, and we may ask how the automorphy of the resulting functions reflects the geometry of the group in question. \\ \ \ In the case of a group that defines a genus zero quotient of the hyperbolic plane the relationship is particularly striking. On the other hand, of the common features of the groups that arise in monstrous moonshine, the genus zero property is perhaps the most elusive. We will illustrate how Rademacher sums elucidate this phenomena by using them to formulate a characterization of the discrete groups of monstrous moonshine. \\ \ \ A physical interpretation of the Rademacher sums comes into view when we consider black holes in the context of three dimensional quantum gravity. This observation, together with the application of Rademacher sums to moonshine, amounts to a new connection between moonshine, number theory and physics, and furnishes applications in all three fields.
24 November 2009
17:00
Tim Burness
Abstract
Let G be a permutation group on a set S. A base for G is a subset B of S such that the pointwise stabilizer of B in G is trivial. We write b(G) for the minimal size of a base for G. Bases for finite permutation groups have been studied since the early days of group theory in the nineteenth century. More recently, strong bounds on b(G) have been obtained in the case where G is a finite simple group, culminating in the recent proof, using probabilistic methods, of a conjecture of Cameron. In this talk, I will report on some recent joint work with Bob Guralnick and Jan Saxl on base sizes for algebraic groups. Let G be a simple algebraic group over an algebraically closed field and let S = G/H be a transitive G-variety, where H is a maximal closed subgroup of G. Our goal is to determine b(G) exactly, and to obtain similar results for some additional base-related measures which arise naturally in the algebraic group context. I will explain the key ideas and present some of the results we have obtained thus far. I will also describe some connections with the corresponding finite groups of Lie type.

Pages