Forthcoming events in this series


Thu, 21 May 2015

14:00 - 15:00
L5

Leverage Scores in Data Analysis

Petros Drineas
(Rensselaer Polytechnic Institute)
Abstract

The Singular Value Decomposition (SVD) of matrices and the related Principal Components Analysis (PCA) express a matrix in terms of singular vectors, which are linear combinations of all the input data and lack an intuitive physical interpretation. Motivated by the application of PCA and SVD in the analysis of populations genetics data, we will discuss the notion of leverage scores: a simple statistic that reveals columns/rows of a matrix that lie in the subspace spanned by the top principal components (left/right singular vectors). We will then use the leverage scores to present matrix decompositions that express the structure in a matrix in terms of actual columns (and/or rows) of the matrix. Such decompositions are easier to interpret in applications, since the selected columns and rows are subsets of the data. We will also discuss extensions of the leverage scores to reveal influential entries of a matrix.

Thu, 14 May 2015

14:00 - 15:00
L5

A Trust Region Algorithm with Improved Iteration Complexity for Nonconvex Smooth Optimization

Frank Curtis
(Lehigh University)
Abstract

We present a trust region algorithm for solving nonconvex optimization problems that, in the worst-case, is able to drive the norm of the gradient of the objective below a prescribed threshold $\epsilon > 0$ after at most ${\cal O}(\epsilon^{-3/2})$ function evaluations, gradient evaluations, or iterations.  Our work has been inspired by the recently proposed Adaptive Regularisation framework using Cubics (i.e., the ARC algorithm), which attains the same worst-case complexity bound.  Our algorithm is modeled after a traditional trust region algorithm, but employs modified step acceptance criteria and a novel trust region updating mechanism that allows it to achieve this desirable property.  Importantly, our method also maintains standard global and fast local convergence guarantees.

Thu, 07 May 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

A preconditioned MINRES method for nonsymmetric Toeplitz matrices

Dr. Jennifer Pestana
(University of Manchester)
Abstract

Although Toeplitz matrices are often dense, matrix-vector products with Toeplitz matrices can be quickly performed via circulant embedding and the fast Fourier transform. This makes their solution by preconditioned Krylov subspace methods attractive. 

For a wide class of symmetric Toeplitz matrices, symmetric positive definite circulant preconditioners that cluster eigenvalues have been proposed. MINRES or the conjugate gradient method can be applied to these problems and descriptive convergence theory based on eigenvalues guarantees fast convergence. 

In contrast, although circulant preconditioners have been proposed for nonsymmetric Toeplitz systems, guarantees of fast convergence are generally only available for CG for the normal equations (CGNE). This is somewhat unsatisfactory because CGNE has certain drawbacks, including slow convergence and a larger condition number. In this talk we discuss a simple alternative symmetrization of nonsymmetric Toeplitz matrices, that allows us to use MINRES to solve the resulting linear system. We show how existing circulant preconditioners for nonsymmetric Toeplitz matrices can be straightforwardly adapted to this situation and give convergence estimates similar to those in the symmetric case.

Thu, 30 Apr 2015

14:00 - 15:00
L5

A Finite-Element Approach to Free-Energy Minimisation

Dr. Scott MacLachlan
(Memorial University of Newfoundland)
Abstract

Numerical simulation tools for fluid and solid mechanics are often based on the discretisation of coupled systems of partial differential equations, which can easily be identified in terms of physical
conservation laws.  In contrast, much physical insight is often gained from the equivalent formulation of the relevant energy or free-energy functional, possibly subject to constraints.  Motivated by the
nonlinear static and dynamic behaviour of nematic liquid crystals and of magnetosensitive elastomers, we propose a finite-element framework for minimising these free-energy functionals, using Lagrange multipliers to enforce additional constraints.  This talk will highlight challenges, limitations, and successes, both in the formulation of these models and their use in numerical simulation.
This is joint work with PhD students Thomas Benson, David Emerson, and Dong Han, and with James Adler, Timothy Atherton, and Luis Dorfmann.

Thu, 12 Mar 2015

14:00 - 15:00
L5

Preconditioning: A Review

Professor Andrew Wathen
((Oxford University))
Abstract

Preconditioning is of significant importance in the solution of large dimensional systems of linear equations such as those that arise from the numerical solution of partial differential equation problems. In this talk we will attempt a broad ranging review of preconditioning.

Thu, 05 Mar 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Preconditioned Iterative Solvers for Constrained Optimization

John Pearson
(Edinburgh University)
Abstract

In this talk, we discuss the development of fast iterative solvers for matrix systems arising from various constrained optimization problems. In particular, we seek to exploit the saddle point structure of these problems to construct powerful preconditioners for the resulting systems, using appropriate approximations of the (1,1)-block and Schur complement.

The problems we consider arise from two well-studied subject areas within computational optimization. Specifically, we investigate the
numerical solution of PDE-constrained optimization problems, and the interior point method (IPM) solution of linear/quadratic programming
problems. Indeed a particular focus in this talk is the interior point method solution of PDE-constrained optimization problems with
additional inequality constraints on the state and control variables.

We present a range of optimization problems which we seek to solve using our methodology, and examine the theoretical and practical
convergence properties of our iterative methods for these problems.
 

Thu, 26 Feb 2015

14:00 - 15:00
L5

Quasi-optimal stability estimates for the hp-Raviart-Thomas projection operator on the cube

Dr Alexey Chernov
(Reading University)
Abstract

Stability of the hp-Raviart-Thomas projection operator as a mapping H^1(K) -> H^1(K) on the unit cube K in R^3 has been addressed e.g. in [2], see also [1]. These results are suboptimal with respect to the polynomial degree. In this talk we present quasi-optimal stability estimates for the hp-Raviart-Thomas projection operator on the cube. The analysis involves elements of the polynomial approximation theory on an interval and the real method of Banach space interpolation.

(Joint work with Herbert Egger, TU Darmstadt)

[1] Mark Ainsworth and Katia Pinchedez. hp-approximation theory for BDFM and RT finite elements on quadrilaterals. SIAM J. Numer. Anal., 40(6):2047–2068 (electronic) (2003), 2002.

[2] Dominik Schötzau, Christoph Schwab, and Andrea Toselli. Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal., 40(6):2171–2194 (electronic) (2003), 2002.

Thu, 19 Feb 2015

14:00 - 15:00
L5

Distinct solutions of nonlinear systems via deflation

Dr Patrick Farrell
((Oxford University))
Abstract

Nonlinear systems of partial differential equations (PDEs) may permit several distinct solutions. The typical current approach to finding distinct solutions is to start Newton's method with many different initial guesses, hoping to find starting points that lie in different basins of attraction. In this talk, we present an infinite-dimensional deflation algorithm for systematically modifying the residual of a nonlinear PDE problem to eliminate known solutions from consideration. This enables the Newton--Kantorovitch iteration to converge to several different solutions, even starting from the same initial guess. The deflated Jacobian is dense, but an efficient preconditioning strategy is devised, and the number of Krylov iterations is observed not to grow as solutions are deflated. The technique is then applied to computing distinct solutions of nonlinear PDEs, tracing bifurcation diagrams, and to computing multiple local minima of PDE-constrained optimisation problems.

Thu, 12 Feb 2015

14:00 - 15:00
L5

The evolution of the universe recreated in a supercomputer

Professor Christian Klingenberg
(University of Wuerzburg)
Abstract

In this talk we will describe the steps towards self-consistent computer simulations of the evolution of the universe beginning soon after the Big Bang and ending with the formation of realistic stellar systems like the Milky Way. This is a multi-scale problem of vast proportions. The first step has been the Millennium Simulation, one of the largest and most successful numerical simulations of the Universe ever carried out. Now we are in the midst of the next step, where this is carried to a much higher level of physical fidelity on the latest supercomputing platforms. This talk will be illustrate how the role of mathematics is essential in this endeavor. Also computer simulations will be shown. This is joint work among others with Volker Springel.

 

Thu, 05 Feb 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Rational Krylov Approximation of Matrix Functions and Applications

Dr Stefan Guettel
(Manchester University)
Abstract

Some problems in scientific computing, like the forward simulation of electromagnetic waves in geophysical prospecting, can be
solved via approximation of f(A)b, the action of a large matrix function f(A) onto a vector b. Iterative methods based on rational Krylov
spaces are powerful tools for these computations, and the choice of parameters in these methods is an active area of research.
We provide an overview of different approaches for obtaining optimal parameters, with an emphasis on the exponential and resolvent function, and the square root. We will discuss applications of the rational Arnoldi method for iteratively generating near-optimal absorbing boundary layers for indefinite Helmholtz problems, and for rational least squares vector fitting.

Thu, 29 Jan 2015

14:00 - 15:00
L5

High-order approximations for some classical Gaussian quadrature

Dr Ignace Bogaert
(University of Ghent)
Abstract

Gaussian quadrature rules are of theoretical and practical interest because of their role in numerical integration and interpolation. For general weighting functions, their computation can be performed with the Golub-Welsch algorithm or one of its refinements. However, for the specific case of Gauss-Legendre quadrature, computation methods based on asymptotic series representations of the Legendre polynomials have recently been proposed. 
For large quadrature rules, these methods provide superior accuracy and speed at the cost of generality. We provide an overview of the progress that was made with these asymptotic methods, focusing on the ideas and asymptotic formulas that led to them. 
Finally, the limited generality will be discussed with Gauss-Jacobi quadrature rules as a prominent possibility for extension.

Thu, 22 Jan 2015

14:00 - 15:00
L5

Electron correlation in van der Waals interactions

Professor Ridgway Scott
(University of Chicago)
Abstract
We examine a technique of Slater and Kirkwood which provides an exact resolution of the asymptotic behavior of the van der Waals attraction between two hydrogens atoms. We modify their technique to make the problem more tractable analytically and more easily solvable by numerical methods. Moreover, we prove rigorously that this approach provides an exact solution for the asymptotic electron correlation. The proof makes use of recent results that utilize the Feshbach-Schur perturbation technique. We provide visual representations of the asymptotic electron correlation (entanglement) based on the use of Laguerre approximations.
Thu, 04 Dec 2014

14:00 - 15:00
L5

Is the Helmholtz equation really sign-indefinite?

Dr Euan Spence
(University of Bath)
Abstract

The usual variational formulations of the Helmholtz equation are sign-indefinite (i.e. not coercive). In this talk, I will argue that this indefiniteness is not an inherent feature of the Helmholtz equation itself, only of its standard formulations. I will do this by presenting new sign-definite formulations of several Helmholtz boundary value problems.

This is joint work with Andrea Moiola (Reading).
 

Thu, 27 Nov 2014

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Incomplete Cholesky preconditioners based on orthogonal dropping : theory and practice

Artem Napov
(Universite Libre de Bruxelles)
Abstract

Incomplete Cholesky factorizations are commonly used as black-box preconditioners for the iterative solution of large sparse symmetric positive definite linear systems. Traditionally, incomplete 
factorizations are obtained by dropping (i.e., replacing by zero) some entries of the factors during the factorization process. Here we consider a less common way to approximate the factors : through low-rank approximations of some off-diagonal blocks. We focus more specifically on approximation schemes that satisfy the orthogonality condition: the approximation should be orthogonal to the corresponding approximation error.

The resulting incomplete Cholesky factorizations have attractive theoretical properties. First, the underlying factorization process can be shown breakdown-free. Further, the condition number of the 
preconditioned system, that characterizes the convergence rate of standard iterative schemes, can be shown bounded as a function of the accuracy of individual approximations. Hence, such a bound can benefit from better approximations, but also from some algorithmic peculiarities. Eventually, the above results can be shown to hold for any symmetric positive definite system matrix.

On the practical side, we consider a particular variant of the preconditioner. It relies on a nested dissection ordering of unknowns to  insure an attractive memory usage and operations count. Further, it exploits in an algebraic way the low-rank structure present in system matrices that arise from PDE discretizations. A preliminary implementation of the method is compared with similar Cholesky and 
incomplete Cholesky factorizations based on dropping of individual entries.

Thu, 20 Nov 2014

14:00 - 15:00
L5

The Dynamic Dictionary of Mathematical Functions

Dr Marc Mezzarobba
(CNRS and Ecole Normale Superieure)
Abstract

The Dynamic Dictionary of Mathematical Functions (or DDMF, http://ddmf.msr-inria.inria.fr/) is an interactive website on special functions inspired by reference books such as the NIST Handbook of Special Functions. The originality of the DDMF is that each of its “chapters” is automatically generated from a short mathematical description of the corresponding function.

To make this possible, the DDMF focuses on so-called D-finite (or holonomic) functions, i.e., complex analytic solutions of linear ODEs with polynomial coefficients. D-finite functions include in particular most standard elementary functions (exp, log, sin, sinh, arctan...) as well as many of the classical special functions of mathematical physics (Airy functions, Bessel functions, hypergeometric functions...). A function of this class can be represented by a finite amount of data (a differential equation along with sufficiently many initial values), 
and this representation makes it possible to develop a computer algebra framework that deals with the whole class in a unified way, instead of ad hoc algorithms and code for each particular function. The DDMF attempts to put this idea into practice.

In this talk, I will present the DDMF, some of the algorithms and software libraries behind it, and ongoing projects based on similar ideas, with an emphasis on symbolic-numeric algorithms.

Thu, 13 Nov 2014

14:00 - 15:00
L5

Quadrature in infinite dimensions and applications in uncertainty quantification

Professor Rob Scheichl
(University of Bath)
Abstract

The coefficients in mathematical models of physical processes are often impossible to determine fully or accurately, and are hence subject to uncertainty. It is of great importance to quantify the uncertainty in the model outputs based on the (uncertain) information that is available on the model inputs. This invariably leads to very high dimensional quadrature problems associated with the computation of statistics of quantities of interest, such as the time it takes a pollutant plume in an uncertain subsurface flow problem to reach the boundary of a safety region or the buckling load of an airplane wing. Higher order methods, such as stochastic Galerkin or polynomial chaos methods, suffer from the curse of dimensionality and when the physical models themselves are complex and computationally costly, they become prohibitively expensive in higher dimensions. Instead, some of the most promising approaches to quantify uncertainties in continuum models are based on Monte Carlo sampling and the “multigrid philosophy”. Multilevel Monte Carlo (MLMC) Methods have been introduced recently and successfully applied to many model problems, producing significant gains. In this talk I want to recall the classical MLMC method and then show how the gains can be improved further (significantly) by using quasi-Monte Carlo (QMC) sampling rules. More importantly the dimension independence and the improved gains can be justified rigorously for an important model problem in subsurface flow. To achieve uniform bounds, independent of the dimension, it is necessary to work in infinite dimensions and to study quadrature in sequence spaces. I will present the elements of this new theory for the case of lognormal random coefficients in a diffusion problem and support the theory with numerical experiments.

Thu, 06 Nov 2014

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Tomographic problems as linear algebra

Bill Lionheart
(Manchester University)
Abstract

For many tomographic imaging problems there are explicit inversion formulas, and depending on the completeness of the data these are unstable to differing degrees. Increasingly we are solving tomographic problems as though they were any other linear inverse problem using numerical linear algebra. I will illustrate the use of numerical singular value decomposition to explore the (in)stability for various problems. I will also show how standard techniques from numerical linear algebra, such as conjugate gradient least squares, can be employed with systematic regularization compared with the ad hoc use of slowly convergent iterative methods more traditionally used in computed tomography. I will mainly illustrate the talk with examples from three dimensional x-ray tomography but I will also touch on tensor tomography problems.
 

Thu, 30 Oct 2014

14:00 - 15:00
L5

Polynomial hulls, low rank perturbations and multicentric calculus

Professor Olavi Nevanlinna
(Aalto University)
Abstract

We outline a path from polynomial numerical hulls to multicentric calculus for evaluating f(A). Consider
$$Vp(A) = {z ∈ C : |p(z)| ≤ kp(A)k}$$
where p is a polynomial and A a bounded linear operator (or matrix). Intersecting these sets over polynomials of degree 1 gives the closure of the numerical range, while intersecting over all polynomials gives the spectrum of A, with possible holes filled in.
Outside any set Vp(A) one can write the resolvent down explicitly and this leads to multicentric holomorphic functional calculus.
The spectrum, pseudospectrum or the polynomial numerical hulls can move rapidly in low rank perturbations. However, this happens in a very controlled way and when measured correctly one gets an identity which shows e.g. the following: if you have a low-rank homotopy between self-adjoint and quasinilpotent, then the identity forces the nonnormality to increase in exact compensation with the spectrum shrinking.
In this talk we shall mention how the multicentric calculus leads to a nontrivial extension of von Neumann theorem
$$kf(A)k ≤ sup |z|≤1
kf(z)k$$
where A is a contraction in a Hilbert space, and conclude with some new results on (nonholomorphic) functional calculus for operators for which p(A) is normal at a nontrivial polynomial p. Notice that this is always true for matrices.

 

Thu, 23 Oct 2014

14:00 - 15:00
L5

Stabilised finite element methods for non symmetric, non coercive and ill-posed problems

Professor Erik Burman
(UCL)
Abstract

In numerical analysis the design and analysis of computational methods is often based on, and closely linked to, a well-posedness result for the underlying continuous problem. In particular the continuous dependence of the continuous model is inherited by the computational method when such an approach is used. In this talk our aim is to design a stabilised finite element method that can exploit continuous dependence of the underlying physical problem without making use of a standard well-posedness result such as Lax-Milgram's Lemma or The Babuska-Brezzi theorem. This is of particular interest for inverse problems or data assimilation problems which may not enter the framework of the above mentioned well-posedness results, but can nevertheless satisfy some weak continuous dependence properties. First we will discuss non-coercive elliptic and hyperbolic equations where the discrete problem can be ill-posed even for well posed continuous problems and then we will discuss the linear elliptic Cauchy problem as an example of an ill-posed problem where there are continuous dependence results available that are suitable for the framework that we propose.

Thu, 16 Oct 2014

14:00 - 15:00
L5

Adjoint-based optimisation for flow analysis and flow control

Professor Peter Schmid
(Imperial College London)
Abstract

Gradient-based optimisation techniques have become a common tool in the analysis of fluid systems. They have been applied to replace and extend large-scale matrix decompositions to compute optimal amplification and optimal frequency responses in unstable and stable flows. We will show how to efficiently extract linearised and adjoint information directly from nonlinear simulation codes and how to use this information for determining common flow characteristics. We also extend this framework to deal with the optimisation of less common norms. Examples from aero-acoustics and mixing will be presented.

Thu, 09 Oct 2014
14:00
L5

TBA

Professor Ke Chen
(University of Liverpool)
Thu, 09 Oct 2014

14:00 - 15:00
L5

Variational segmentation models for selective extraction of features in an image – challenges in modelling, algorithms and applications

Professor Ke Chen
(University of Liverpool)
Abstract

Mathematical imaging is not only a multidisciplinary research area but also a major cross-discipline subject within mathematical sciences as  image analysis techniques involve differential geometry, optimization, nonlinear partial differential equations (PDEs), mathematical analysis, computational algorithms and numerical analysis. Segmentation refers to the essential problem in imaging and vision  of automatically detecting objects in an image.

 

In this talk I first review some various models and techniques in the variational framework that are used for segmentation of images, with the purpose of discussing the state of arts rather than giving a comprehensive survey. Then I introduce the practically demanding task of detecting local features in a large image and our recent segmentation methods using energy minimization and  PDEs. To ensure uniqueness and fast solution, we reformulate one non-convex functional as a convex one and further consider how to adapt the additive operator splitting method for subsequent solution. Finally I show our preliminary work to attempt segmentation of blurred images in the framework of joint deblurring and segmentation.

  

This talk covers joint work with Jianping Zhang, Lavdie Rada, Bryan Williams, Jack Spencer (Liverpool, UK), N. Badshah and H. Ali (Pakistan). Other collaborators in imaging in general include T. F. Chan, R. H. Chan, B. Yu,  L. Sun, F. L. Yang (China), C. Brito (Mexico), N. Chumchob (Thailand),  M. Hintermuller (Germany), Y. Q. Dong (Denmark), X. C. Tai (Norway) etc. [Related publications from   http://www.liv.ac.uk/~cmchenke ]

Thu, 09 Oct 2014

02:00 - 03:00
L5

Variational Segmentation Models for Selective Extraction of Features in An Image: Challenges in Modelling, Algorithms and Applications

Professor Ke Chen
(The University of Liverpool)
Abstract

Mathematical imaging is not only a multidisciplinary research area but also a major cross-discipline subject within mathematical sciences as  image analysis techniques involve differential geometry, optimization, nonlinear partial differential equations (PDEs), mathematical analysis, computational algorithms and numerical analysis. Segmentation refers to the essential problem in imaging and vision  of automatically detecting objects in an image.

 

In this talk I first review some various models and techniques in the variational framework that are used for segmentation of images, with the purpose of discussing the state of arts rather than giving a comprehensive survey. Then I introduce the practically demanding task of detecting local features in a large image and our recent segmentation methods using energy minimization and  PDEs. To ensure uniqueness and fast solution, we reformulate one non-convex functional as a convex one and further consider how to adapt the additive operator splitting method for subsequent solution. Finally I show our preliminary work to attempt segmentation of blurred images in the framework of joint deblurring and segmentation.

  

This talk covers joint work with Jianping Zhang, Lavdie Rada, Bryan Williams, Jack Spencer (Liverpool, UK), N. Badshah and H. Ali (Pakistan). Other collaborators in imaging in general include T. F. Chan, R. H. Chan, B. Yu,  L. Sun, F. L. Yang (China), C. Brito (Mexico), N. Chumchob (Thailand),  M. Hintermuller (Germany), Y. Q. Dong (Denmark), X. C. Tai (Norway) etc.

[Related publications from   http://www.liv.ac.uk/~cmchenke ]

Thu, 19 Jun 2014
14:00
Rutherford Appleton Laboratory, nr Didcot

Preconditioning and deflation techniques for interior point methods

Dr Rachael Tappenden
(Edinburgh University)
Abstract

The accurate and efficient solution of linear systems Ax = b is very important in many engineering and technological applications, and systems of this form also arise as subproblems within other algorithms. In particular, this is true for interior point methods (IPM), where the Newton system must be solved to find the search direction at each iteration. Solving this system is a computational bottleneck of an IPM, and in this talk I will explain how preconditioning and deflation techniques can be used, to lessen this computational burden.

This is joint work with Jacek Gondzio.

Thu, 12 Jun 2014
14:00
L5

Cyclic Schemes for PDE-Based Image Analysis

Professor Joachim Weickert
(Universität des Saarlandes)
Abstract

Many successful methods in image processing and computer vision involve

parabolic and elliptic partial differential equations (PDEs). Thus, there

is a growing demand for simple and highly efficient numerical algorithms

that work for a broad class of problems. Moreover, these methods should

also be well-suited for low-cost parallel hardware such as GPUs.

In this talk we show that two of the simplest methods for the numerical

analysis of PDEs can lead to remarkably efficient algorithms when they

are only slightly modified: To this end, we consider cyclic variants of

the explicit finite difference scheme for approximating parabolic problems,

and of the Jacobi overrelaxation method for solving systems of linear

equations.

Although cyclic algorithms have been around in the numerical analysis

community for a long time, they have never been very popular for a number

of reasons. We argue that most of these reasons have become obsolete and

that cyclic methods ideally satisfy the needs of modern image processing

applications. Interestingly this transfer of knowledge is not a one-way

road from numerical analysis to image analysis: By considering a

factorisation of general smoothing filters, we introduce novel, signal

processing based ways of deriving cycle parameters. They lead to hitherto

unexplored methods with alternative parameter cycles. These methods offer

better smoothing properties than classical numerical concepts such as

Super Time Stepping and the cyclic Richardson algorithm.

We present a number of prototypical applications that demonstrate the

wide applicability of our cyclic algorithms. They include isotropic

and anisotropic nonlinear diffusion processes, higher dimensional

variational problems, and higher order PDEs.