Forthcoming events in this series
Fast computation of the semiclassical Schrödinger equation
Abstract
Equations of quantum mechanics in the semiclassical regime present an enduring challenge for numerical analysts, because their solution is highly oscillatory and evolves on two scales. Standard computational approaches to the semiclassical Schrödinger equation do not allow for long time integration as required, for example, in quantum control of atoms by short laser bursts. This has motivated our approach of asymptotic splittings. Combining techniques from Lie-algebra theory and numerical algebra, we present a new computational paradigm of symmetric Zassenhaus splittings, which lends itself to a very precise discretisation in long time intervals, at very little cost. We will illustrate our talk by examples of quantum phenomena – quantum tunnelling and quantum scattering – and their computation and, time allowing, discuss an extension of this methodology to time-dependent semiclassical systems using Magnus expansions
The Worst Case Complexity of Direct Search and Beyond
Abstract
This talk focuses on the direct search method, arguably one of the simplest optimization algorithms. The algorithm minimizes an objective function by iteratively evaluating it along a number of (polling) directions, which are typically taken from so-called positive spanning sets. It does not use derivatives.
We first introduce the worst case complexity theory of direct search, and discuss how to choose the positive spanning set to minimize the complexity bound. The discussion leads us to a long-standing open
problem in Discrete Geometry. A recent result on this problem enables us to establish the optimal order for the worst case complexity of direct search.
We then show how to achieve even lower complexity bound by using random polling directions. It turns out that polling along two random directions at each iteration is sufficient to guarantee the convergence
of direct search for any dimension, and the resultant algorithm enjoys lower complexity both in theory and in practice.
The last part of the talk is devoted to direct search based on inaccurate function values. We address three questions:
i) what kind of solution can we obtain by direct search if the function values are inaccurate?
ii) what is the worst case complexity to attain such a solution? iii) given
the inaccuracy in the function values, when to stop the algorithm in order
to guarantee the quality of the solution and also avoid “over-optimization”?
This talk is based on joint works with F. Delbos, M. Dodangeh, S. Gratton, B. Pauwels, C. W. Royer, and L. N. Vicente.
Adaptivity and blow-up detection for nonlinear evolution PDEs
Abstract
I will review some recent work on the problem of reliable automatic detection of blow-up behaviour for nonlinear parabolic PDEs. The adaptive algorithms developed are based on rigorous conditional a posteriori error bounds. The use of space-time adaptivity is crucial in making the problem computationally tractable. The results presented are applicable to quite general spatial operators, rendering the approach potentially useful in informing respective PDE theory. The new adaptive algorithm is shown to accurately estimate the blow-up time of a number of problems, including ones exhibiting regional blow-up.
Multilevel optimization
Abstract
The talk will introduce the concepts of multilevel optimization and motivate them in the context of problems arising from the discretization of infinite dimensional applications. It will be shown how optimization methods can accomodate a number of useful (and classical) ideas from the multigrid
community, and thereby produce substantial efficiency improvements compared to existing large-scale minimization techniques. Two different classes of multilevel methods will be discussed: trust-region and linesearch algorithms.
The first class will be described in the context of a multilevel generalization of the well-known trust-region-Newton method. The second will focus on limited-memory quasi-Newton algorithms. Preliminary numerical results will be presented which indicate that both types of multilevel algorithms may be practically very advantageous.
Multigrid Methods for Nonlinear PDE Systems with Applications in Phase-Field Models
Inexact computers for more accurate weather and climate predictions
Abstract
In numerical atmosphere models, values of relevant physical parameters are often uncertain by more than 100% and weather forecast skill is significantly reduced after a couple of days. Still, numerical operations are typically calculated in double precision with 15 significant decimal digits. If we reduce numerical precision, we can reduce power consumption and increase computational performance significantly. If savings are reinvested to build larger supercomputers, this would allow an increase in resolution in weather and climate models and might lead to better predictions of future weather and climate.
I will discuss approaches to reduce numerical precision beyond single precision in high performance computing and in particular in weather and climate modelling. I will present results that show that precision can be reduced significantly in atmosphere models and that potential savings can be huge. I will also discuss how rounding errors will impact model dynamics and interact with model uncertainty and predictability.
Constraint preconditioning for the coupled Stokes-Darcy system
Abstract
We propose the use of a constraint preconditioner for the iterative solution of the linear system arising from the finite element discretization of the coupled Stokes-Darcy system. The Stokes-Darcy system is a set of coupled PDEs that can be used to model a freely flowing fluid over porous media flow. The fully coupled system matrix is large, sparse, non-symmetric, and of saddle point form. We provide for exact versions of the constraint preconditioner spectral and field-of-values bounds that are independent of the underlying mesh width. We present several numerical experiments, using the deal.II finite element library, that illustrate our results in both two and three dimensions. We compare exact and inexact versions of the constraint preconditioner against standard block diagonal and block lower triangular preconditioners to illustrate its favorable properties.
Randomized iterative methods for linear systems
Abstract
We develop a novel, fundamental and surprisingly simple randomized iterative method for solving consistent linear systems. Our method has six different but equivalent interpretations: sketch-and-project, constrain-and-approximate, random intersect, random linear solve, random update and random fixed point. By varying its two parameters—a positive definite matrix (defining geometry), and a random matrix (sampled in an i.i.d. fashion in each iteration)—we recover a comprehensive array of well known algorithms as special cases, including the randomized Kaczmarz method, randomized Newton method, randomized coordinate descent method and random Gaussian pursuit. We naturally also obtain variants of all these methods using blocks and importance sampling. However, our method allows for a much wider selection of these two parameters, which leads to a number of new specific methods. We prove exponential convergence of the expected norm of the error in a single theorem, from which existing complexity results for known variants can be obtained. However, we also give an exact formula for the evolution of the expected iterates, which allows us to give lower bounds on the convergence rate.
Linear Algebra for Matrix-Free Optimization
Abstract
When formulated appropriately, the broad families of sequential quadratic programming, augmented Lagrangian and interior-point methods all require the solution of symmetric saddle-point linear systems. When regularization is employed, the systems become symmetric and quasi definite. The latter are
indefinite but their rich structure and strong relationships with definite systems enable specialized linear algebra, and make them prime candidates for matrix-free implementations of optimization methods. In this talk, I explore various formulations of the step equations in optimization and corresponding
iterative methods that exploit their structure.
Interior Point Methods for Optimal Power Flow Formulations
Abstract
Security Constrained Optimal Power Flow is an increasingly important problem for power systems operation both in its own right and as a subproblem for more complex problems such as transmission switching or
unit commitment.
The structure of the problem resembles stochastic programming problems in that one aims to find a cost optimal operation schedule that is feasible for all possible equipment outage scenarios
(contingencies). Due to the presence of power flow constraints (in their "DC" or "AC" version), the resulting problem is a large scale linear or nonlinear programming problem.
However it is known that only a small subset of the contingencies is active at the solution. We show how Interior Point methods can exploit this structure both by simplifying the linear algebra operations as
well as generating necessary contingencies on the fly and integrating them into the algorithm using IPM warmstarting techniques. The final problem solved by this scheme is significantly smaller than the full
contingency constrained problem, resulting in substantial speed gains.
Numerical and theoretical results of our algorithm will be presented.
Polytopic Finite Element Methods
Abstract
Can we extend the FEM to general polytopic, i.e. polygonal and polyhedral, meshes while retaining
the ease of implementation and computational cost comparable to that of standard FEM? Within this talk, I present two approaches that achieve just that (and much more): the Virtual Element Method (VEM) and an hp-version discontinuous Galerkin (dG) method.
The Virtual Element spaces are like the usual (polynomial) finite element spaces with the addition of suitable non-polynomial functions. This is far from being a novel idea. The novelty of the VEM approach is that it avoids expensive evaluations of the non-polynomial "virtual" functions by basing all
computations solely on the method's carefully chosen degrees of freedom. This way we can easily deal
with complicated element geometries and/or higher continuity requirements (like C1, C2, etc.), while
maintaining the computational complexity comparable to that of standard finite element computations.
As you might expect, the choice and number of the degrees of freedom depends on such continuity
requirements. If mesh flexibility is the goal, while one is ready to give up on global regularity, other approaches can be considered. For instance, dG approaches are naturally suited to deal with polytopic meshes. Here I present an extension of the classical Interior Penalty dG method which achieves optimal rates of convergence on polytopic meshes even under elemental edge/face degeneration.
The next step is to exploit mesh flexibility in the efficient resolution of problems characterised by
complicated geometries and solution features, for instance within the framework of automatic FEM
adaptivity. I shall finally introduce ongoing work in this direction.
Semi-Langrangian Methods for Monge-Ampère Equations
Abstract
In this seminar I will present a semi-langrangian discretisation of the Monge-Ampère operator, which is of interest in optimal transport
and differential geometry as well as in related fields of application.
I will discuss the proof of convergence to viscosity solutions. To address the challenge of uniqueness and convexity we draw upon the classical relationship with Hamilton-Jacobi-Bellman equations, which we extend to the viscosity setting. I will explain that the monotonicity of semi-langrangian schemes implies that they possess large stencils, which in turn requires careful treatment of the boundary conditions.
The contents of the seminar is based on current work with X Feng from the University of Tennessee.
Leverage Scores in Data Analysis
Abstract
The Singular Value Decomposition (SVD) of matrices and the related Principal Components Analysis (PCA) express a matrix in terms of singular vectors, which are linear combinations of all the input data and lack an intuitive physical interpretation. Motivated by the application of PCA and SVD in the analysis of populations genetics data, we will discuss the notion of leverage scores: a simple statistic that reveals columns/rows of a matrix that lie in the subspace spanned by the top principal components (left/right singular vectors). We will then use the leverage scores to present matrix decompositions that express the structure in a matrix in terms of actual columns (and/or rows) of the matrix. Such decompositions are easier to interpret in applications, since the selected columns and rows are subsets of the data. We will also discuss extensions of the leverage scores to reveal influential entries of a matrix.
A Trust Region Algorithm with Improved Iteration Complexity for Nonconvex Smooth Optimization
Abstract
We present a trust region algorithm for solving nonconvex optimization problems that, in the worst-case, is able to drive the norm of the gradient of the objective below a prescribed threshold $\epsilon > 0$ after at most ${\cal O}(\epsilon^{-3/2})$ function evaluations, gradient evaluations, or iterations. Our work has been inspired by the recently proposed Adaptive Regularisation framework using Cubics (i.e., the ARC algorithm), which attains the same worst-case complexity bound. Our algorithm is modeled after a traditional trust region algorithm, but employs modified step acceptance criteria and a novel trust region updating mechanism that allows it to achieve this desirable property. Importantly, our method also maintains standard global and fast local convergence guarantees.
A preconditioned MINRES method for nonsymmetric Toeplitz matrices
Abstract
Although Toeplitz matrices are often dense, matrix-vector products with Toeplitz matrices can be quickly performed via circulant embedding and the fast Fourier transform. This makes their solution by preconditioned Krylov subspace methods attractive.
For a wide class of symmetric Toeplitz matrices, symmetric positive definite circulant preconditioners that cluster eigenvalues have been proposed. MINRES or the conjugate gradient method can be applied to these problems and descriptive convergence theory based on eigenvalues guarantees fast convergence.
In contrast, although circulant preconditioners have been proposed for nonsymmetric Toeplitz systems, guarantees of fast convergence are generally only available for CG for the normal equations (CGNE). This is somewhat unsatisfactory because CGNE has certain drawbacks, including slow convergence and a larger condition number. In this talk we discuss a simple alternative symmetrization of nonsymmetric Toeplitz matrices, that allows us to use MINRES to solve the resulting linear system. We show how existing circulant preconditioners for nonsymmetric Toeplitz matrices can be straightforwardly adapted to this situation and give convergence estimates similar to those in the symmetric case.
A Finite-Element Approach to Free-Energy Minimisation
Abstract
Numerical simulation tools for fluid and solid mechanics are often based on the discretisation of coupled systems of partial differential equations, which can easily be identified in terms of physical
conservation laws. In contrast, much physical insight is often gained from the equivalent formulation of the relevant energy or free-energy functional, possibly subject to constraints. Motivated by the
nonlinear static and dynamic behaviour of nematic liquid crystals and of magnetosensitive elastomers, we propose a finite-element framework for minimising these free-energy functionals, using Lagrange multipliers to enforce additional constraints. This talk will highlight challenges, limitations, and successes, both in the formulation of these models and their use in numerical simulation.
This is joint work with PhD students Thomas Benson, David Emerson, and Dong Han, and with James Adler, Timothy Atherton, and Luis Dorfmann.
Preconditioning: A Review
Abstract
Preconditioning is of significant importance in the solution of large dimensional systems of linear equations such as those that arise from the numerical solution of partial differential equation problems. In this talk we will attempt a broad ranging review of preconditioning.
Preconditioned Iterative Solvers for Constrained Optimization
Abstract
In this talk, we discuss the development of fast iterative solvers for matrix systems arising from various constrained optimization problems. In particular, we seek to exploit the saddle point structure of these problems to construct powerful preconditioners for the resulting systems, using appropriate approximations of the (1,1)-block and Schur complement.
The problems we consider arise from two well-studied subject areas within computational optimization. Specifically, we investigate the
numerical solution of PDE-constrained optimization problems, and the interior point method (IPM) solution of linear/quadratic programming
problems. Indeed a particular focus in this talk is the interior point method solution of PDE-constrained optimization problems with
additional inequality constraints on the state and control variables.
We present a range of optimization problems which we seek to solve using our methodology, and examine the theoretical and practical
convergence properties of our iterative methods for these problems.
Quasi-optimal stability estimates for the hp-Raviart-Thomas projection operator on the cube
Abstract
Stability of the hp-Raviart-Thomas projection operator as a mapping H^1(K) -> H^1(K) on the unit cube K in R^3 has been addressed e.g. in [2], see also [1]. These results are suboptimal with respect to the polynomial degree. In this talk we present quasi-optimal stability estimates for the hp-Raviart-Thomas projection operator on the cube. The analysis involves elements of the polynomial approximation theory on an interval and the real method of Banach space interpolation.
(Joint work with Herbert Egger, TU Darmstadt)
[1] Mark Ainsworth and Katia Pinchedez. hp-approximation theory for BDFM and RT finite elements on quadrilaterals. SIAM J. Numer. Anal., 40(6):2047–2068 (electronic) (2003), 2002.
[2] Dominik Schötzau, Christoph Schwab, and Andrea Toselli. Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal., 40(6):2171–2194 (electronic) (2003), 2002.
Distinct solutions of nonlinear systems via deflation
Abstract
Nonlinear systems of partial differential equations (PDEs) may permit several distinct solutions. The typical current approach to finding distinct solutions is to start Newton's method with many different initial guesses, hoping to find starting points that lie in different basins of attraction. In this talk, we present an infinite-dimensional deflation algorithm for systematically modifying the residual of a nonlinear PDE problem to eliminate known solutions from consideration. This enables the Newton--Kantorovitch iteration to converge to several different solutions, even starting from the same initial guess. The deflated Jacobian is dense, but an efficient preconditioning strategy is devised, and the number of Krylov iterations is observed not to grow as solutions are deflated. The technique is then applied to computing distinct solutions of nonlinear PDEs, tracing bifurcation diagrams, and to computing multiple local minima of PDE-constrained optimisation problems.
The evolution of the universe recreated in a supercomputer
Abstract
In this talk we will describe the steps towards self-consistent computer simulations of the evolution of the universe beginning soon after the Big Bang and ending with the formation of realistic stellar systems like the Milky Way. This is a multi-scale problem of vast proportions. The first step has been the Millennium Simulation, one of the largest and most successful numerical simulations of the Universe ever carried out. Now we are in the midst of the next step, where this is carried to a much higher level of physical fidelity on the latest supercomputing platforms. This talk will be illustrate how the role of mathematics is essential in this endeavor. Also computer simulations will be shown. This is joint work among others with Volker Springel.
Rational Krylov Approximation of Matrix Functions and Applications
Abstract
Some problems in scientific computing, like the forward simulation of electromagnetic waves in geophysical prospecting, can be
solved via approximation of f(A)b, the action of a large matrix function f(A) onto a vector b. Iterative methods based on rational Krylov
spaces are powerful tools for these computations, and the choice of parameters in these methods is an active area of research.
We provide an overview of different approaches for obtaining optimal parameters, with an emphasis on the exponential and resolvent function, and the square root. We will discuss applications of the rational Arnoldi method for iteratively generating near-optimal absorbing boundary layers for indefinite Helmholtz problems, and for rational least squares vector fitting.
High-order approximations for some classical Gaussian quadrature
Abstract
Gaussian quadrature rules are of theoretical and practical interest because of their role in numerical integration and interpolation. For general weighting functions, their computation can be performed with the Golub-Welsch algorithm or one of its refinements. However, for the specific case of Gauss-Legendre quadrature, computation methods based on asymptotic series representations of the Legendre polynomials have recently been proposed.
For large quadrature rules, these methods provide superior accuracy and speed at the cost of generality. We provide an overview of the progress that was made with these asymptotic methods, focusing on the ideas and asymptotic formulas that led to them.
Finally, the limited generality will be discussed with Gauss-Jacobi quadrature rules as a prominent possibility for extension.
Electron correlation in van der Waals interactions
Abstract
Is the Helmholtz equation really sign-indefinite?
Abstract
The usual variational formulations of the Helmholtz equation are sign-indefinite (i.e. not coercive). In this talk, I will argue that this indefiniteness is not an inherent feature of the Helmholtz equation itself, only of its standard formulations. I will do this by presenting new sign-definite formulations of several Helmholtz boundary value problems.
This is joint work with Andrea Moiola (Reading).
Incomplete Cholesky preconditioners based on orthogonal dropping : theory and practice
Abstract
Incomplete Cholesky factorizations are commonly used as black-box preconditioners for the iterative solution of large sparse symmetric positive definite linear systems. Traditionally, incomplete
factorizations are obtained by dropping (i.e., replacing by zero) some entries of the factors during the factorization process. Here we consider a less common way to approximate the factors : through low-rank approximations of some off-diagonal blocks. We focus more specifically on approximation schemes that satisfy the orthogonality condition: the approximation should be orthogonal to the corresponding approximation error.
The resulting incomplete Cholesky factorizations have attractive theoretical properties. First, the underlying factorization process can be shown breakdown-free. Further, the condition number of the
preconditioned system, that characterizes the convergence rate of standard iterative schemes, can be shown bounded as a function of the accuracy of individual approximations. Hence, such a bound can benefit from better approximations, but also from some algorithmic peculiarities. Eventually, the above results can be shown to hold for any symmetric positive definite system matrix.
On the practical side, we consider a particular variant of the preconditioner. It relies on a nested dissection ordering of unknowns to insure an attractive memory usage and operations count. Further, it exploits in an algebraic way the low-rank structure present in system matrices that arise from PDE discretizations. A preliminary implementation of the method is compared with similar Cholesky and
incomplete Cholesky factorizations based on dropping of individual entries.
The Dynamic Dictionary of Mathematical Functions
Abstract
The Dynamic Dictionary of Mathematical Functions (or DDMF, http://ddmf.msr-inria.inria.fr/) is an interactive website on special functions inspired by reference books such as the NIST Handbook of Special Functions. The originality of the DDMF is that each of its “chapters” is automatically generated from a short mathematical description of the corresponding function.
To make this possible, the DDMF focuses on so-called D-finite (or holonomic) functions, i.e., complex analytic solutions of linear ODEs with polynomial coefficients. D-finite functions include in particular most standard elementary functions (exp, log, sin, sinh, arctan...) as well as many of the classical special functions of mathematical physics (Airy functions, Bessel functions, hypergeometric functions...). A function of this class can be represented by a finite amount of data (a differential equation along with sufficiently many initial values),
and this representation makes it possible to develop a computer algebra framework that deals with the whole class in a unified way, instead of ad hoc algorithms and code for each particular function. The DDMF attempts to put this idea into practice.
In this talk, I will present the DDMF, some of the algorithms and software libraries behind it, and ongoing projects based on similar ideas, with an emphasis on symbolic-numeric algorithms.
Quadrature in infinite dimensions and applications in uncertainty quantification
Abstract
The coefficients in mathematical models of physical processes are often impossible to determine fully or accurately, and are hence subject to uncertainty. It is of great importance to quantify the uncertainty in the model outputs based on the (uncertain) information that is available on the model inputs. This invariably leads to very high dimensional quadrature problems associated with the computation of statistics of quantities of interest, such as the time it takes a pollutant plume in an uncertain subsurface flow problem to reach the boundary of a safety region or the buckling load of an airplane wing. Higher order methods, such as stochastic Galerkin or polynomial chaos methods, suffer from the curse of dimensionality and when the physical models themselves are complex and computationally costly, they become prohibitively expensive in higher dimensions. Instead, some of the most promising approaches to quantify uncertainties in continuum models are based on Monte Carlo sampling and the “multigrid philosophy”. Multilevel Monte Carlo (MLMC) Methods have been introduced recently and successfully applied to many model problems, producing significant gains. In this talk I want to recall the classical MLMC method and then show how the gains can be improved further (significantly) by using quasi-Monte Carlo (QMC) sampling rules. More importantly the dimension independence and the improved gains can be justified rigorously for an important model problem in subsurface flow. To achieve uniform bounds, independent of the dimension, it is necessary to work in infinite dimensions and to study quadrature in sequence spaces. I will present the elements of this new theory for the case of lognormal random coefficients in a diffusion problem and support the theory with numerical experiments.
Tomographic problems as linear algebra
Abstract
For many tomographic imaging problems there are explicit inversion formulas, and depending on the completeness of the data these are unstable to differing degrees. Increasingly we are solving tomographic problems as though they were any other linear inverse problem using numerical linear algebra. I will illustrate the use of numerical singular value decomposition to explore the (in)stability for various problems. I will also show how standard techniques from numerical linear algebra, such as conjugate gradient least squares, can be employed with systematic regularization compared with the ad hoc use of slowly convergent iterative methods more traditionally used in computed tomography. I will mainly illustrate the talk with examples from three dimensional x-ray tomography but I will also touch on tensor tomography problems.
Polynomial hulls, low rank perturbations and multicentric calculus
Abstract
We outline a path from polynomial numerical hulls to multicentric calculus for evaluating f(A). Consider
$$Vp(A) = {z ∈ C : |p(z)| ≤ kp(A)k}$$
where p is a polynomial and A a bounded linear operator (or matrix). Intersecting these sets over polynomials of degree 1 gives the closure of the numerical range, while intersecting over all polynomials gives the spectrum of A, with possible holes filled in.
Outside any set Vp(A) one can write the resolvent down explicitly and this leads to multicentric holomorphic functional calculus.
The spectrum, pseudospectrum or the polynomial numerical hulls can move rapidly in low rank perturbations. However, this happens in a very controlled way and when measured correctly one gets an identity which shows e.g. the following: if you have a low-rank homotopy between self-adjoint and quasinilpotent, then the identity forces the nonnormality to increase in exact compensation with the spectrum shrinking.
In this talk we shall mention how the multicentric calculus leads to a nontrivial extension of von Neumann theorem
$$kf(A)k ≤ sup |z|≤1
kf(z)k$$
where A is a contraction in a Hilbert space, and conclude with some new results on (nonholomorphic) functional calculus for operators for which p(A) is normal at a nontrivial polynomial p. Notice that this is always true for matrices.
Stabilised finite element methods for non symmetric, non coercive and ill-posed problems
Abstract
In numerical analysis the design and analysis of computational methods is often based on, and closely linked to, a well-posedness result for the underlying continuous problem. In particular the continuous dependence of the continuous model is inherited by the computational method when such an approach is used. In this talk our aim is to design a stabilised finite element method that can exploit continuous dependence of the underlying physical problem without making use of a standard well-posedness result such as Lax-Milgram's Lemma or The Babuska-Brezzi theorem. This is of particular interest for inverse problems or data assimilation problems which may not enter the framework of the above mentioned well-posedness results, but can nevertheless satisfy some weak continuous dependence properties. First we will discuss non-coercive elliptic and hyperbolic equations where the discrete problem can be ill-posed even for well posed continuous problems and then we will discuss the linear elliptic Cauchy problem as an example of an ill-posed problem where there are continuous dependence results available that are suitable for the framework that we propose.
Adjoint-based optimisation for flow analysis and flow control
Abstract
Gradient-based optimisation techniques have become a common tool in the analysis of fluid systems. They have been applied to replace and extend large-scale matrix decompositions to compute optimal amplification and optimal frequency responses in unstable and stable flows. We will show how to efficiently extract linearised and adjoint information directly from nonlinear simulation codes and how to use this information for determining common flow characteristics. We also extend this framework to deal with the optimisation of less common norms. Examples from aero-acoustics and mixing will be presented.
Variational segmentation models for selective extraction of features in an image – challenges in modelling, algorithms and applications
Abstract
Mathematical imaging is not only a multidisciplinary research area but also a major cross-discipline subject within mathematical sciences as image analysis techniques involve differential geometry, optimization, nonlinear partial differential equations (PDEs), mathematical analysis, computational algorithms and numerical analysis. Segmentation refers to the essential problem in imaging and vision of automatically detecting objects in an image.
In this talk I first review some various models and techniques in the variational framework that are used for segmentation of images, with the purpose of discussing the state of arts rather than giving a comprehensive survey. Then I introduce the practically demanding task of detecting local features in a large image and our recent segmentation methods using energy minimization and PDEs. To ensure uniqueness and fast solution, we reformulate one non-convex functional as a convex one and further consider how to adapt the additive operator splitting method for subsequent solution. Finally I show our preliminary work to attempt segmentation of blurred images in the framework of joint deblurring and segmentation.
This talk covers joint work with Jianping Zhang, Lavdie Rada, Bryan Williams, Jack Spencer (Liverpool, UK), N. Badshah and H. Ali (Pakistan). Other collaborators in imaging in general include T. F. Chan, R. H. Chan, B. Yu, L. Sun, F. L. Yang (China), C. Brito (Mexico), N. Chumchob (Thailand), M. Hintermuller (Germany), Y. Q. Dong (Denmark), X. C. Tai (Norway) etc. [Related publications from http://www.liv.ac.uk/~cmchenke ]
Variational Segmentation Models for Selective Extraction of Features in An Image: Challenges in Modelling, Algorithms and Applications
Abstract
Mathematical imaging is not only a multidisciplinary research area but also a major cross-discipline subject within mathematical sciences as image analysis techniques involve differential geometry, optimization, nonlinear partial differential equations (PDEs), mathematical analysis, computational algorithms and numerical analysis. Segmentation refers to the essential problem in imaging and vision of automatically detecting objects in an image.
In this talk I first review some various models and techniques in the variational framework that are used for segmentation of images, with the purpose of discussing the state of arts rather than giving a comprehensive survey. Then I introduce the practically demanding task of detecting local features in a large image and our recent segmentation methods using energy minimization and PDEs. To ensure uniqueness and fast solution, we reformulate one non-convex functional as a convex one and further consider how to adapt the additive operator splitting method for subsequent solution. Finally I show our preliminary work to attempt segmentation of blurred images in the framework of joint deblurring and segmentation.
This talk covers joint work with Jianping Zhang, Lavdie Rada, Bryan Williams, Jack Spencer (Liverpool, UK), N. Badshah and H. Ali (Pakistan). Other collaborators in imaging in general include T. F. Chan, R. H. Chan, B. Yu, L. Sun, F. L. Yang (China), C. Brito (Mexico), N. Chumchob (Thailand), M. Hintermuller (Germany), Y. Q. Dong (Denmark), X. C. Tai (Norway) etc.
[Related publications from http://www.liv.ac.uk/~cmchenke ]
14:00
Preconditioning and deflation techniques for interior point methods
Abstract
The accurate and efficient solution of linear systems Ax = b is very important in many engineering and technological applications, and systems of this form also arise as subproblems within other algorithms. In particular, this is true for interior point methods (IPM), where the Newton system must be solved to find the search direction at each iteration. Solving this system is a computational bottleneck of an IPM, and in this talk I will explain how preconditioning and deflation techniques can be used, to lessen this computational burden.
This is joint work with Jacek Gondzio.
14:00
Cyclic Schemes for PDE-Based Image Analysis
Abstract
Many successful methods in image processing and computer vision involve
parabolic and elliptic partial differential equations (PDEs). Thus, there
is a growing demand for simple and highly efficient numerical algorithms
that work for a broad class of problems. Moreover, these methods should
also be well-suited for low-cost parallel hardware such as GPUs.
In this talk we show that two of the simplest methods for the numerical
analysis of PDEs can lead to remarkably efficient algorithms when they
are only slightly modified: To this end, we consider cyclic variants of
the explicit finite difference scheme for approximating parabolic problems,
and of the Jacobi overrelaxation method for solving systems of linear
equations.
Although cyclic algorithms have been around in the numerical analysis
community for a long time, they have never been very popular for a number
of reasons. We argue that most of these reasons have become obsolete and
that cyclic methods ideally satisfy the needs of modern image processing
applications. Interestingly this transfer of knowledge is not a one-way
road from numerical analysis to image analysis: By considering a
factorisation of general smoothing filters, we introduce novel, signal
processing based ways of deriving cycle parameters. They lead to hitherto
unexplored methods with alternative parameter cycles. These methods offer
better smoothing properties than classical numerical concepts such as
Super Time Stepping and the cyclic Richardson algorithm.
We present a number of prototypical applications that demonstrate the
wide applicability of our cyclic algorithms. They include isotropic
and anisotropic nonlinear diffusion processes, higher dimensional
variational problems, and higher order PDEs.
14:00
Classical floating-point error bounds revisited
14:00
Atomistic/Continuum Multiscale Methods
Abstract
For many questions of scientific interest, all-atom molecular simulations are still out of reach, in particular in materials engineering where large numbers of atoms, and often expensive force fields, are required. A long standing challenge has been to construct concurrent atomistic/continuum coupling schemes that use atomistic models in regions of space where high accuracy is required, with computationally efficient continuum models (e.g., FEM) of the elastic far-fields.
Many different mechanisms for achieving such atomistic/continuum couplings have been developed. To assess their relative merits, in particular accuracy/cost ratio, I will present a numerical analysis framework. I will use this framework to analyse in more detail a particularly popular scheme (the BQCE scheme), identifying key approximation parameters which can then be balanced (in a surprising way) to obtain an optimised formulation.
Finally, I will demonstrate that this analysis shows how to remove a severe bottlenecks in the BQCE scheme, leading to a new scheme with optimal convergence rate.
14:00
A finite element exterior calculus framework for the rotating shallow water equations
Abstract
We describe discretisations of the shallow water equations on
the sphere using the framework of finite element exterior calculus. The
formulation can be viewed as an extension of the classical staggered
C-grid energy-enstrophy conserving and
energy-conserving/enstrophy-dissipating schemes which were defined on
latitude-longitude grids. This work is motivated by the need to use
pseudo-uniform grids on the sphere (such as an icosahedral grid or a
cube grid) in order to achieve good scaling on massively parallel
computers, and forms part of the multi-institutional UK “Gung Ho”
project which aims to design a next generation dynamical core for the
Met Office Unified Model climate and weather prediction system. The
rotating shallow water equations are a single layer model that is
used to benchmark the horizontal component of numerical schemes for
weather prediction models.
We show, within the finite element exterior calculus framework, that it
is possible
to build numerical schemes with horizontal velocity and layer depth that
have a con-
served diagnostic potential vorticity field, by making use of the
geometric properties of the scheme. The schemes also conserve energy and
enstrophy, which arise naturally as conserved quantities out of a
Poisson bracket formulation. We show that it is possible to modify the
discretisation, motivated by physical considerations, so that enstrophy
is dissipated, either by using the Anticipated Potential Vorticity
Method, or by inducing stabilised advection schemes for potential
vorticity such as SUPG or higher-order Taylor-Galerkin schemes. We
illustrate our results with convergence tests and numerical experiments
obtained from a FEniCS implementation on the sphere.
14:00
Plane Wave Discontinuous Galerkin Methods: Exponential Convergence of the hp-version
Abstract
Computer simulation of the propagation and interaction of linear waves
is a core task in computational science and engineering.
The finite element method represents one of the most common
discretisation techniques for Helmholtz and Maxwell's equations, which
model time-harmonic acoustic and electromagnetic wave scattering.
At medium and high frequencies, resolution requirements and the
so-called pollution effect entail an excessive computational effort
and prevent standard finite element schemes from an effective use.
The wave-based Trefftz methods offer a possible way to deal with this
problem: trial and test functions are special solutions of the
underlying PDE inside each element, thus the information about the
frequency is directly incorporated in the discrete spaces.
This talk is concerned with a family of those methods: the so-called
Trefftz-discontinuous Galerkin (TDG) methods, which include the
well-known ultraweak variational formulation (UWVF).
We derive a general formulation of the TDG method for Helmholtz
impedance boundary value problems and we discuss its well-posedness
and quasi-optimality.
A complete theory for the (a priori) h- and p-convergence for plane
and circular/spherical wave finite element spaces has been developed,
relying on new best approximation estimates for the considered
discrete spaces.
In the two-dimensional case, on meshes with very general element
shapes geometrically graded towards domain corners, we prove
exponential convergence of the discrete solution in terms of number of
unknowns.
This is a joint work with Ralf Hiptmair, Christoph Schwab (ETH Zurich,
Switzerland) and Ilaria Perugia (Vienna, Austria).
14:00
Towards robust and scalable algebraic domain decomposition - CANCELLED
Abstract
PLEASE NOTE: THIS EVENT HAS BEEN CANCELLED
14:00
Adjoint sensitivity analysis in Thermoacoustics
Abstract
Thermoacoustic oscillations occur in combustion chambers when heat release oscillations lock into pressure oscillations. They were first observed in lamps in the 18th century, in rockets in the 1930s, and are now one of the most serious problems facing gas turbine manufacturers.
This theoretical and numerical study concerns an infinite-rate chemistry diffusion flame in a tube, which is a simple model for a flame in a combustion chamber. The problem is linearized around the non-oscillating state in order to derive the direct and adjoint equations governing the evolution of infinitesimal oscillations.
The direct equations are used to predict the frequency, growth rate, and mode shape of the most unstable thermoacoustic oscillations. The adjoint equations are then used to calculate how the frequency and growth rate change in response to (i) changes to the base state such as the flame shape or the composition of the fuel (ii) generic passive feedback mechanisms that could be added to the device. This information can be used to stabilize the system, which is verified by subsequent experiments.
This analysis reveals that, as expected from a simple model, the phase delay between velocity and heat-release fluctuations is the key parameter in determining the sensitivities. It also reveals that this thermo-acoustic system is exceedingly sensitive to changes in the base state. This analysis can be extended to more accurate models and is a promising new tool for the analysis and control of thermo-acoustic oscillations.
14:00
Modeling of reactive events
Abstract
Dynamics in nature often proceed in the form of reactive events, aka activated processes. The system under study spends very long periods of time in various metastable states; only very rarely does it transition from one such state to another. Understanding the dynamics of such events requires us to study the ensemble of transition paths between the different metastable states. Transition path theory (TPT) is a general mathematical framework developed for this purpose. It is also the foundation for developing modern numerical algorithms such as the string method for finding the transition pathways or milestoning to calculate the reaction rate, and it can also be used in the context of Markov State Models (MSMs). In this talk, I will review the basic ingredients of the transition path theory and discuss connections with transition state theory (TST) as well as approaches to metastability based on potential theory and large deviation theory. I will also discuss how the string method arises in order to find approximate solutions in the framework of the transition path theory, the connections between milestoning and TPT, and the way the theory help building MSMs. The concepts and methods will be illustrated using examples from molecular dynamics, material science and atmosphere/ocean sciences.
Instance optimality of an AFEM with maximum marking strategy
Abstract
Adaptive finite element methods (AFEMs) with Dörflers marking strategy are known to converge with
optimal asymptotical rates. Practical experiences show that AFEMs with a maximum marking strategy
produces optimal results thereby being less sensitive to choices of the marking parameter.
\\
\\
In this talk, we prove that an AFEM with a modified maximum strategy is even instance optimal for the
total error, i.e., for the sum of the error and the oscillation. This is a non-asymptotical optimality result.
Our approach uses new techniques based on the minimisation of the Dirichlet energy and a newly
developed tree structure of the nodes of admissible triangulations.
Kullback-Leibler Approximation Of Probability Measures
Abstract
Many problems in the physical sciences
require the determination of an unknown
function from a finite set of indirect measurements.
Examples include oceanography, oil recovery,
water resource management and weather forecasting.
The Bayesian approach to these problems
is natural for many reasons, including the
under-determined and ill-posed nature of the inversion,
the noise in the data and the uncertainty in
the differential equation models used to describe
complex mutiscale physics. The object of interest
in the Bayesian approach is the posterior
probability distribution on the unknown field [1].
\\
\\
However the Bayesian approach presents a
computationally formidable task as it
results in the need to probe a probability
measure on separable Banach space. Monte
Carlo Markov Chain methods (MCMC) may be
used to achieve this [2], but can be
prohibitively expensive. In this talk I
will discuss approximation of probability measures
by a Gaussian measure, looking for the closest
approximation with respect to the Kullback-Leibler
divergence. This methodology is widely
used in machine-learning [3]. In the context of
target measures on separable Banach space
which themselves have density with respect to
a Gaussian, I will show how to make sense of the
resulting problem in the calculus of variations [4].
Furthermore I will show how the approximate
Gaussians can be used to speed-up MCMC
sampling of the posterior distribution [5].
\\
\\
[1] A.M. Stuart. "Inverse problems: a Bayesian
perspective." Acta Numerica 19(2010) and
http://arxiv.org/abs/1302.6989
\\
[2] S.L.Cotter, G.O.Roberts, A.M. Stuart and D. White,
"MCMC methods for functions: modifying old algorithms
to make them faster". Statistical Science 28(2013).
http://arxiv.org/abs/1202.0709
\\
[3] C.M. Bishop, "Pattern recognition and machine learning".
Springer, 2006.
\\
[4] F.J. Pinski G. Simpson A.M. Stuart H. Weber, "Kullback-Leibler
Approximations for measures on infinite dimensional spaces."
http://arxiv.org/abs/1310.7845
\\
[5] F.J. Pinski G. Simpson A.M. Stuart H. Weber, "Algorithms
for Kullback-Leibler approximation of probability measures in
infinite dimensions." In preparation.
Alternating minimal energy methods for linear systems in higher dimensions
Abstract
When high-dimensional
problems are concerned, not much algorithms can break the curse of
dimensionality, and solve them efficiently and reliably. Among those, tensor
product algorithms, which implement the idea of separation of variables for
multi-index arrays (tensors), seem to be the most general and also very
promising. They originated in quantum physics and chemistry and descent broadly
from the density matrix renormalization group (DMRG) and matrix
product states (MPS) formalisms. The same tensor formats were recently
re-discovered in the numerical linear algebra (NLA) community as the tensor
train (TT) format.
Algorithms developed in the quantum physics community are based on the
optimisation in tensor formats, that is performed subsequently for all
components of a tensor format (i.e. all sites or modes).
The DMRG/MPS schemes are very efficient but very difficult to analyse, and at
the moment only local convergence results for the simplest algorithm are
available. In the NLA community, a common approach is to use a classical
iterative scheme (e.g. GMRES) and enforce the compression to a tensor format at
every step. The formal analysis is quite straightforward, but tensor ranks of
the vectors which span the Krylov subspace grow rapidly with iterations, and
the methods are struggling in practice.
The first attempt to merge classical iterative algorithms and DMRG/MPS methods
was made by White (2005), where the second Krylov vector is used to expand the
search space on the optimisation step.
The idea proved to be useful, but the implementation was based on the fair
amount of physical intuition, and the algorithm is not completely justified.
We have recently proposed the AMEn algorithm for linear systems, that also
injects the gradient direction in the optimisation step, but in a way that
allows to prove the global convergence of the resulted scheme. The
scheme can be easily applied for the computation of the ground state --- the
differences to the algorithm of S. White are emphasized in Dolgov and
Savostyanov (2013).
The AMEn scheme is already acknowledged in the NLA community --- for example it
was recently applied for the computation of extreme eigenstates by Kressner,
Steinlechner and Uschmajew (2013), using the block-TT format proposed by in
Dolgov, Khoromskij, Oseledets and Savostyanov (2014).
At the moment, AMEn algorithm was applied
- to simulate the NMR spectra of large molecules (such as ubiquitin),
- to solve the Fokker-Planck equation for the non-Newtonian polymeric
flows,
- to the chemical master equation describing the mesoscopic model of gene
regulative networks,
- to solve the Heisenberg model problem for a periodic spin chain.
We aim to extend this framework and the analysis to other problems of NLA:
eigenproblems, time-dependent problems, high-dimensional interpolation, and
matrix functions; as well as to a wider list of high-dimensional
problems.
This is a joint work with Sergey Dolgov the from Max-Planck Institute for
Mathematics in the Sciences, Leipzig, Germany.