Forthcoming events in this series


Tue, 12 Nov 2024
16:00
C3

Spectral gap in the operator on traces induced from a C*-correspondence

Jeremy Hume
(University of Glasgow)
Abstract

A C*-correspondence between two C*-algebras is a generalization of a *-homomorphism. Laca and Neshveyev showed that, like a *-homomorphism, there is an induced map between traces of the algebras. Given sufficient regularity conditions, the map defines a bounded operator between the spaces of (bounded) tracial linear functionals. 

This operator can be of independent interest - a special case of correspondence gives Ruelle's operator associated to a non-invertible discrete-time dynamical system, and the study of Ruelle's operator is the basis of his thermodynamic formalism. Moreover, by the work of Laca and Neshveyev, the operator's positive eigenvectors determine the KMS states of the gauge action on the Cuntz-Pimsner algebra of the correspondence.

Given a C*-correspondence from a C*-algebra to itself, we will present a sufficient condition on the C*-correspondence that implies the operator on traces has a unique positive eigenvector, and moreover a spectral gap. This result recovers the Perron-Frobenius theorem, aspects of Ruelle's thermodynamic formalism, and unique KMS state results for a variety of constructions of Cuntz-Pimsner algebras, including the C*-algebras associated to self-similar groupoids. The talk is based on work in progress.

Tue, 05 Nov 2024
16:00
C3

A stable uniqueness theorem for tensor category equivariant KK-theory

Sergio Giron Pacheco
(KU Leuven)
Abstract

The stable uniqueness theorem for KK-theory asserts that a Cuntz-pair of *-homomorphisms between separable C*-algebras gives the zero element in KK if and only if the *-homomorphisms are stably homotopic through a unitary path, in a specific sense. This result, along with its group equivariant analogue, has been crucial in the classification theory of C*-algebras and C*-dynamics. In this talk, I will present a unitary tensor category analogue of the stable uniqueness theorem and explore its application to a duality in tensor category equivariant KK-theory. To make the talk approachable even for those unfamiliar with actions of unitary tensor categories or KK-theory, I will introduce the relevant definitions and concepts, drawing comparisons with the case of group actions. This is joint work with Kan Kitamura and Robert Neagu.

Tue, 29 Oct 2024
16:00
C3

Semi-uniform stability of semigroups and their cogenerators

Andrew Pritchard
(University of Newcastle)
Abstract

The notion of semi-uniform stability of a strongly continuous semi-group refers to the stability of classical solutions of a linear evolution equation, and this has analogues with the classical Katznelson-Tzafriri theorem. The co-generator of a strongly continuous semigroup is a bounded linear operator that comes from a particular discrete approximation to the semigroup. After reviewing some background on (quantified) stability theory for semigroups and the Katznelson-Tzafriri theorem, I will present some results relating the stability of a strongly continuous semigroup with that of its cogenerator. This talk is based on joint work with David Seifert.

Thu, 24 Oct 2024
16:00
C3

Roe type algebras and their isomorphisms

Alessandro Vignati
(Université de Paris Cité)
Abstract

Roe type algebras are operator algebras designed to catch the large-scale behaviour of metric spaces. This talk focuses on the following question: if two Roe type algebras associated to spaces (X,d_X) and (Y,d_Y) are isomorphic, how similar are X and Y? We provide positive results proved in the last 5 years, and, if time allows it, we show that sometimes answers to this question are subject to set theoretic considerations

Tue, 22 Oct 2024
16:00
C3

A unified approach for classifying simple nuclear C*-algebras

Ben Bouwen
(University of Southern Denmark)
Abstract

The classification program of C*-algebras aims to classify simple, separable, nuclear C*-algebras by their K-theory and traces, inspired by analogous results obtained for von Neumann algebras. A landmark result in this project was obtained in 2015, building upon the work of numerous researchers over the past 20 years. More recently, Carrión, Gabe, Schafhauser, Tikuisis, and White developed a new, more abstract approach to classification, which connects more explicitly to the von Neumann algebraic classification results. In their paper, they carry out this approach in the stably finite setting, while for the purely infinite case, they refer to the original result obtained by Kirchberg and Phillips. In this talk, I provide an overview of how the new approach can be adapted to classify purely infinite C*-algebras, recovering the Kirchberg-Phillips classification by K-theory and obtaining Kirchberg's absorption theorems as corollaries of classification rather than (pivotal) ingredients. This is joint work with Jamie Gabe.

Tue, 15 Oct 2024
16:00
C3

Continuous selection in II1 factors

Andrea Vaccaro
(University of Münster)
Abstract

In this talk, based on a joint work with Ilijas Farah, I will present an application of an old continuous selection theorem due to Michael to the study of II1 factors. More precisely, I'll show that if two strongly continuous paths (or loops) of projections (p_t), (q_t), for t in [0,1], in a II1 factor are such that every p_t is subequivalent to q_t, then the subequivalence can be realized by a strongly continuous path (or loop) of partial isometries. I will then use an extension of this result to solve affirmatively the so-called trace problem for factorial W*-bundles whose base space is 1-dimensional.

Tue, 13 Aug 2024
14:00
C4

When is an operator system a C*-algebra?

Kristen Courtney
(University of Southern Denmark)
Abstract

In the category of operator systems, identification comes via complete order isomorphisms, and so an operator system can be identified with a C*-algebra without itself being an algebra. So, when is an operator system a C*-algebra? This question has floated around the community for some time. From Choi and Effros, we know that injectivity is sufficient, but certainly not necessary outside of the finite-dimensional setting. In this talk, I will give a characterization in the separable nuclear setting coming from C*-encoding systems. This comes from joint work with Galke, van Lujik, and Stottmeister.

Mon, 12 Aug 2024
16:00
C4

A topology on E-theory

Jose Carrion
(Texas Christian University)
Abstract
For separable C*-algebras A and B, we define a topology on the set [[A,B]] consisting of homotopy classes of asymptotic morphisms from A to B. This gives an enrichment of the Connes–Higson asymptotic category over topological spaces. We show that the Hausdorffization of this category is equivalent to the shape category of Dadarlat. As an application, we obtain a topology on the E-theory group E(A,B) with properties analogous to those of the topology on KK(A,B). The Hausdorffized E-theory group EL(A,B)  is also introduced and studied. We obtain a continuity result for the functor EL(- , B) which implies a new continuity result for the functor KL(-, B).
 
This is joint work with Christopher Schafhauser.
 
Tue, 16 Jul 2024

16:00 - 17:00
C4

Homotopy in Cuntz classes of Z-stable C*-algebras

Andrew Toms
(Purdue University)
Abstract

The Cuntz semigroup of a C*-algebra is an ordered monoid consisting of equivalence classes of positive elements in the stabilization of the algebra.  It can be thought of as a generalization of the Murray-von Neumann semigroup, and records substantial information about the structure of the algebra.  Here we examine the set of positive elements having a fixed equivalence class in the Cuntz semigroup of a simple, separable, exact and Z-stable C*-algebra and show that this set is path connected when the class is non-compact, i.e., does not correspond to the class of a projection in the C*-algebra.  This generalizes a known result from the setting of real rank zero C*-algebras.

Tue, 02 Jul 2024

15:30 - 16:30
North Lecture Theatre, St John’s College Oxford

Tracial Classification of C*-algebras

Jorge Castillejos Lopez
(UNAM Mexico)
Abstract

The classification of simple, unital, nuclear UCT C*-algebras with finite nuclear dimension can be achieved using an invariant derived from K-theory and tracial information. In this talk, I will present a classification theorem for certain classes of C*-algebras that rely solely on tracial deformations.  

Fri, 28 Jun 2024

15:00 - 16:00
C1

Permanence of Structural properties when taking crossed products

Dawn Archey
(University of Detroit Mercy)
Abstract

 Structural properties of C*-Algebras such as Stable Rank One, Real Rank Zero, and radius of comparison have played an important role in classification.  Crossed product C*-Algebras are useful examples to study because knowledge of the base Algebra can be leveraged to determine properties of the crossed product.  In this talk we will discuss the permanence of various structural properties when taking crossed products of several types.  Crossed products considered will include the usual C* crossed product by a group action along with generalizations such as crossed products by a partial automorphism.  

This talk is based on joint work with Julian Buck and N. Christopher Phillips and on joint work with Maria Stella Adamo, Marzieh Forough, Magdalena Georgescu, Ja A Jeong, Karen Strung, and Maria Grazia Viola.

Thu, 27 Jun 2024

16:30 - 17:30
C1

The Zappa–Szép product of groupoid twists

Anna Duwenig
(KU Leuven)
Abstract

The Zappa–Szép (ZS) product of two groupoids is a generalization of the semi-direct product: instead of encoding one groupoid action by homomorphisms, the ZS product groupoid encodes two (non-homomorphic, but “compatible”) actions of the groupoids on each other. I will show how to construct the ZS product of two twists over such groupoidand give an example using Weyl twists from Cartan pairs arising from Kumjian--Renault theory.

 Based on joint work with Boyu Li, New Mexico State University

Thu, 27 Jun 2024

15:15 - 16:15
C1

Cartan subalgebras of twisted groupoid $C^*$-algebras with a focus on $k$-graph $C^*$-algebras

Rachael Norton
(St Olaf College)
Abstract

The set $M_n(\mathbb{R})$ of all $n \times n$ matrices over the real numbers is an example of an algebraic structure called a $C^*$-algebra. The subalgebra $D$ of diagonal matrices has special properties and is called a \emph{Cartan subalgebra} of $M_n(\mathbb{R})$. Given an arbitrary $C^*$-algebra, it can be very hard (but also very rewarding) to find a Cartan subalgebra, if one exists at all. However, if the $C^*$-algebra is generated by a cocycle $c$ and a group (or groupoid) $G$, then it is natural to look within $G$ for a subgroup (or subgroupoid) $S$ that may give rise to a Cartan subalgebra. In this talk, we identify sufficient conditions on $S$ and $c$ so that the subalgebra generated by $(S,c)$ is indeed a Cartan subalgebra of the $C^*$-algebra generated by $(G,c)$. We then apply our theorem to $C^*$-algebras generated by $k$-graphs, which are directed graphs in higher dimensions. This is joint work with J. Briones Torres, A. Duwenig, L. Gallagher, E. Gillaspy, S. Reznikoff, H. Vu, and S. Wright.

Mon, 24 Jun 2024

15:00 - 16:00
C1

Self-similar k-graph C*-algebras

Dilian Yang
(University of Windsor)
Abstract

A self-similar k-graph is a pair consisting of a (discrete countable) group and a k-graph, such that the group acts on the k-graph self-similarly. For such a pair, one can associate it with a universal C*-algebra, called the self-similar k-graph C*-algebra. This class of C*-algebras embraces many important and interesting C*-algebras,  such as the higher rank graph C*-algebras of Kumjian-Pask, the Katsura algebras,  the Nekrashevych algebras constructed from self-similar groups, and the Exel-Pardo algebra. 

In this talk, we will survey some results on self-similar k-graph C*-algebras. 

Tue, 11 Jun 2024

16:00 - 17:00
C2

Metric invariants from curvature-like inequalities

Florent Baudier
Abstract

A central theme in the 40-year-old Ribe program is the quest for metric invariants that characterize local properties of Banach spaces. These invariants are usually closely related to the geometry of certain sequences of finite graphs (Hamming cubes, binary trees, diamond graphs...) and provide quantitative bounds on the bi-Lipschitz distortion of those graphs.

A more recent program, deeply influenced by the late Nigel Kalton, has a similar goal but for asymptotic properties instead. In this talk, we will motivate the (asymptotic) notions of infrasup umbel convexity (introduced in collaboration with Chris Gartland (UC San Diego)) and bicone convexity. These asymptotic notions are inspired by the profound work of Lee, Mendel, Naor, and Peres on the (local) notion of Markov convexity and of Eskenazis, Mendel, and Naor on the (local) notion of diamond convexity. 

All these metric invariants share the common feature of being derived from point-configuration inequalities which generalize curvature inequalities.

If time permits we will discuss the values of these invariants for Heisenberg groups.

Thu, 06 Jun 2024
16:30
C2

The invariant subspace problem

Per Enflo
Abstract
I will present a method to construct invariant subspaces - non-cyclic vectors - for a general operator on Hilbert space. It represents a new direction of a method of "extremal vectors", first presented in Ansari-Enflo [1]. One looks for an analytic function l(T) of T, of minimal norm, which moves a vector y near to a given vector x. The construction produces for most operators T a non-cyclic vector, by gradual approximation by almost non-cyclic vectors. But for certain weighted shifts, almost non-cyclic vectors will not always converge to a non-cyclic vector. The construction recognizes this, and when the construction does not work, it will show, that T has some shift-like properties.

 

Reference:
1. S. Ansari, P. Enflo, "Extremal vectors and invariant subspaces", Transactions of Am. Math. Soc. Vol. 350 no.2, 1998, pp.539–558
Tue, 28 May 2024

16:00 - 17:00
C2

W*-superrigidity for cocycle twisted group von Neumann algebras

Milan Donvil
(KU Leuven)
Abstract

A group is called W*-superrigid if its group von Neumann algebra completely remembers the original group. In this talk, I will present a recent joint work with Stefaan Vaes in which we generalize W*-superrigidity for groups in two directions. Firstly, we find a class of groups for which W*-superrigidity holds in the presence of a twist by an arbitrary 2-cocycle: the twisted group von Neumann algebra completely remembers both the original group and the 2-cocycle. Secondly, for the same class of groups, the superrigidity also holds up to virtual isomorphism.

Tue, 21 May 2024

16:00 - 17:00
C2

Nuclear dimension of Cuntz-Krieger algebras associated with shift spaces

Sihan Wei
(University of Glasgow)
Abstract

Associated to every shift space, the Cuntz-Krieger algebra (C-K algebra for abbreviation) is an invariant of conjugacy defined and developed by K. Matsumoto, S. Eilers, T. Carlsen, and many of their collaborators in the last decade. In particular, Carlsen defined the C-K algebra to be the full groupoid C*-algebra of the “cover”, which is a topological system consisting of a surjective local homeomorphism on a zero-dimensional space induced by the shift space. 

In 2022, K. Brix proved that the C-K algebra of the Sturmian shift has finite nuclear dimension, where the Sturmian shift is the (unique) minimal shift space with the smallest complexity function: p_X(n)=n+1. In recent results (joint with Z. He), we show that for any minimal shift space with finitely many left special elements, its C-K algebra always have finite nuclear dimension. In fact, this can be further applied to the class of aperiodic shift spaces with non-superlinear growth complexity. 

Tue, 14 May 2024

16:00 - 17:00
C2

Non-isomorphic simple AH algebras with the same Elliott invariant and same radius of comparison

Ilan Hirshberg
(Ben-Gurion University of the Negev)
Abstract

Recently, Elliott, Li, and Niu proved a classification theorem for Villadsen-type algebras using the combination of the Elliott invariant and the radius of comparison, an invariant that was introduced by Toms in order to distinguish between certain non-isomorphic AH algebras with the same Elliott invariant. This might have raised the prospect that the Elliott classification program can be extended beyond the Z-stable case by adding the radius of comparison to the invariant. I will discuss a recent preprint in which we show that this is not the case: we construct an uncountable family of nonisomorphic AH algebras with the same Elliott and same radius of comparison. We can distinguish between them using a finer invariant, which we call the local radius of comparison. This is joint work with N. Christopher Phillips.

Tue, 07 May 2024

16:00 - 17:00
C2

Title: $C^*$ -diagonal of Inductive limits of 1-dimensional Noncommutative CW-complexes

Dolapo Oyetunbi
(University of Ottawa)
Abstract

A $C^*$-diagonal is a certain commutative subalgebra of a $C^∗$ -algebra with a rich structure. Renault and Kumjian showed that finding a $C^*$ -diagonal of a $C^∗$-algebra is equivalent to realizing the $C^*$-algebra via a groupoid. This establishes a close connection between $C^∗$-diagonals and dynamics and allows one to relate the geometric properties of groupoids to the properties of $C^∗$ -diagonals. 

In this talk, I will explore the unique pure state extension property of an Abelian $C^*$-subalgebra of a 1-dim NCCW complex, the approximation of morphisms between two 1-dim NCCW complexes by $C^*$-diagonal preserving morphisms, and the existence of $C^*$-diagonal in inductive limits of certain 1-dim NCCW complexes.

Tue, 30 Apr 2024

16:00 - 17:00
C2

Equivariantly O2-stable actions: classification and range of the invariant

Matteo Pagliero
(KU Leuven)
Abstract

One possible version of the Kirchberg—Phillips theorem states that simple, separable, nuclear, purely infinite C*-algebras are classified by KK-theory. In order to generalize this result to non-simple C*-algebras, Kirchberg first restricted his attention to those that absorb the Cuntz algebra O2 tensorially. C*-algebras in this class carry no KK-theoretical information in a strong sense, and they are classified by their ideal structure alone. It should be mentioned that, although this result is in Kirchberg’s work, its full proof was first published by Gabe. In joint work with Gábor Szabó, we showed a generalization of Kirchberg's O2-stable theorem that classifies G-C*-algebras up to cocycle conjugacy, where G is any second-countable, locally compact group. In our main result, we assume that actions are amenable, sufficiently outer, and absorb the trivial action on O2 up to cocycle conjugacy. In very recent work, I moreover show that the range of the classification invariant, consisting of a topological dynamical system over primitive ideals, is exhausted for any second-countable, locally compact group.

In this talk, I will recall the classification of O2-stable C*-algebras, and describe their classification invariant. Subsequently, I will give a short introduction to the C*-dynamical working framework and present the classification result for equivariant O2-stable actions. Time permitting, I will give an idea of how one can build a C*-dynamical system in the scope of our classification with a prescribed invariant. 

Tue, 23 Apr 2024

16:00 - 17:00
C2

Gauge-invariant ideal structure of C*-algebras associated with strong compactly aligned product systems

Joseph Dessi
(Newcastle University)
Abstract

Product systems represent powerful contemporary tools in the study of mathematical structures. A major success in the theory came from Katsura (2007), who provided a complete description of the gauge-invariant ideals of many important C*-algebras arising from product systems over Z+. This result recaptures existing results from the literature, illustrating the versatility of product system theory. The question now becomes whether or not Katsura's result can be bolstered to product systems over semigroups other than Z+ and, if so, what applications do we obtain? An answer has been elusive, owing to the more pathological nature of product systems over general semigroups. However, recent strides by Dor-On and Kakariadis (2018) supply a more tractable subclass of product systems that still includes the important cases of C*-dynamics, row-finite higher-rank graphs, and regular product systems. 

In this talk we will build a parametrisation of the gauge-invariant ideals, starting from first principles and gradually increasing in complexity. We will pay particular attention to the higher-rank subtleties that are not witnessed in Katsura's theorem, and comment on the applications.
 

Thu, 18 Apr 2024

16:00 - 17:00
C2

Transportation Cost Spaces and their embeddings in L_1 spaces

Thomas Schulmprecht
(Texas A&M University)
Abstract

Transportation cost spaces are of high theoretical interest,  and they also are fundamental in applications in many areas of applied mathematics, engineering, physics, computer science, finance, and social sciences. 

Obtaining low distortion embeddings of transportation cost spaces into L_1 became important in the problem of finding nearest points, an important research subject in theoretical computer science. After introducing

these spaces we will present some results on upper  and lower estimates of the distortion of embeddings of Transportation Cost Spaces into L_1

Thu, 21 Mar 2024

16:00 - 17:00
C2

Biexact von Neumann algebras

Changying Ding
(UCLA)
Abstract

The notion of biexactness for groups was introduced by Ozawa in 2004 and has since become a major tool used for studying solidity of von Neumann algebras. We introduce the notion of biexactness for von Neumann algebras, which allows us to place many previous solidity results in a more systematic context, and naturally leads to extensions of these results. We will also discuss examples of solid factors that are not biexact. This is a joint work with Jesse Peterson.