Past Industrial and Applied Mathematics Seminar

8 February 2018
16:00
to
17:30
Nicolas Vandewalle
Abstract

When soft ferromagnetic particles are suspended at air-water interfaces in the presence of a vertical magnetic field, dipole-dipole repulsion competes with capillary attraction such that 2d structures self-assemble. The complex arrangements of such floating bodies are emphasized. The equilibrium distance between particles exhibits hysteresis when the applied magnetic field is modified. Irreversible processes are evidenced. By adding a horizontal and oscillating magnetic field, periodic deformations of the assembly are induced. We show herein that collective particle motions induce locomotion at low Reynolds number. The physical mechanisms and geometrical ingredients behind this cooperative locomotion are identified. These physical mechanisms can be exploited to much smaller scales, offering the possibility to create artificial and versatile microscopic swimmers.

Moreover, we show that it is possible to generate complex structures that are able to capture particles, perform cargo transport, fluid mixing, etc.

  • Industrial and Applied Mathematics Seminar
1 February 2018
16:00
to
17:30
Renaud Lambiotte
Abstract

In this talk, I will present some recent results exploring the connections between dynamical systems and network science. I will particularly focus on large-scale structures and their dynamical interpretation. Those may correspond to communities/clusters or classes of dynamically equivalent nodes. If time allows, I will also present results where the underlying network structure is unknown and where communities are directly inferred from time series observed on the nodes.

 

  • Industrial and Applied Mathematics Seminar
25 January 2018
16:00
to
17:30
Abstract

How do organisms cope with cellular variability to achieve well-defined morphologies and architectures? We are addressing this question by combining experiments with live plants and analyses of (stochastic) models that integrate cell-cell communication and tissue mechanics. During the talk, I will survey our results concerning plant architecture (phyllotaxis) and organ morphogenesis.

  • Industrial and Applied Mathematics Seminar
18 January 2018
16:00
to
17:30
James Gleeson
Abstract

Network models may be applied to describe many complex systems, and in the era of online social networks the study of dynamics on networks is an important branch of computational social science.  Cascade dynamics can occur when the state of a node is affected by the states of its neighbours in the network, for example when a Twitter user is inspired to retweet a message that she received from a user she follows, with one event (the retweet) potentially causing further events (retweets by followers of followers) in a chain reaction. In this talk I will review some simple models that can help us understand how social contagion (the spread of cultural fads and the viral diffusion of information) depends upon the structure of the social network and on the dynamics of human behaviour. Although the models are simple enough to allow for mathematical analysis, I will show examples where they can also provide good matches to empirical observations of cascades on social networks.

  • Industrial and Applied Mathematics Seminar
6 December 2017
11:30
to
13:00
Yuli Chashechkin
Abstract

Using synchronized high-speed video camera, hydrophone and microphone we investigated flow patterns, the impact and secondary sound pulses emitted by oscillating bubbles. On the submerging  drop found short capillary waves produced by small secondary impact droplets. Picturesque filament and grid structures produced by colour drop of mixing fluid registered on the surface of the cavity and crown. Physical model includes discussion of the potential surface energy effects.

  • Industrial and Applied Mathematics Seminar
30 November 2017
16:00
to
17:30
Giuseppe Zurlo
Abstract

Inelastic surface growth associated with continuous creation of incompatibility on the boundary of an evolving body is behind a variety of both natural processes (embryonic development,  tree growth) and technological processes (dam construction, 3D printing). Despite the ubiquity of such processes, the mechanical aspects of surface growth are still not fully understood. In this talk we present  a new approach to surface growth that allows one to address inelastic effects,  path dependence of the growth process and the resulting geometric frustration. In particular, we show that incompatibility developed during deposition can be fine-tuned to ensure a particular behaviour of the system in physiological (or working) conditions. As an illustration, we compute an explicit deposition protocol aimed at "printing" arteries, that guarantees the attainment of desired stress distributions in physiological conditions. Another illustration is the growth starategy for explosive plants, allowing a complete release of residual elastic energy with a single cut.

  • Industrial and Applied Mathematics Seminar
23 November 2017
16:30
Alexander Bradley
Abstract

It is thought that the hairy legs of water walking arthropods are able to remain clean and dry because the flexibility of the hairs spontaneously moves drops off the hairs. We present a mathematical model of this bending-induced motion, or bendotaxis, and study how it performs for wetting and non-wetting drops. Crucially, we show that both wetting and non-wetting droplets move in the same direction (using physical arguments and numerical solutions). This suggests that a surface covered in elastic filaments (such as the hairy leg of insects) may be able to universally self-clean. To quantify the efficiency of this effect, we explore the conditions under which drops leave the structure by ‘spreading’ rather than translating and also how long it takes to do so.

  • Industrial and Applied Mathematics Seminar
23 November 2017
16:00
Matthew Butler
Abstract

Many species of insects adhere to vertical and inverted surfaces using footpads that secrete thin films of a mediating fluid. The fluid bridges the gap between the foot and the target surface. The precise role of this liquid is still subject to debate, but it is thought that the contribution of surface tension to the adhesive force may be significant. It is also known that the footpad is soft, suggesting that capillary forces might deform its surface. Inspired by these physical ingredients, we study a model problem in which a thin, deformable membrane under tension is adhered to a flat, rigid surface by a liquid droplet. We find that there can be multiple possible equilibrium states, with the number depending on the applied tension and aspect ratio of the system. The presence of elastic deformation  ignificantly enhances the adhesion force compared to a rigid footpad. A mathematical model shows that the equilibria of the system can be controlled via two key parameters depending on the imposed separation of the foot and target surface, and the tension applied to the membrane. We confirm this finding experimentally and show that the system may transition rapidly between two states as the two parameters are varied. This suggests that different strategies may be used to adhere strongly and then detach quickly.

  • Industrial and Applied Mathematics Seminar
16 November 2017
16:00
to
17:30
Giovanni Samaey
Abstract

We present a framework for the design, analysis and application of computational multiscale methods for slow-fast high-dimensional stochastic processes. We call these processes "microscopic'', and assume existence of an approximate "macroscopic'' model that captures the slow behaviour of a selected set of macroscopic state variables. The methodology combines short bursts of microscopic simulation with extrapolation at the macroscopic level. The methodology requires the careful study of a few key algorithmic ingredients. First, we need to properly initialise the microscopic system, based on a given macroscopic state and (possibly) a prior microscopic state that contains additional information about the system. Second, we need to control the variance of the noise that originates from the microscopic Monte Carlo simulation. Third, we need to analyse stability of the extrapolation step. We will discuss these aspects on two types of model problems -- scale-separated SDEs and kinetic equations -- and show the efficacity of the resulting methods in diverse applications, ranging from tumor growth to fusion energy.

  • Industrial and Applied Mathematics Seminar
9 November 2017
16:00
to
17:30
Stephen Watson
Abstract

The statistical physics governing phase-ordering dynamics following a symmetry breaking rst-order phase transition is an area of active research. The Coarsening/Ageing of the ensemble of phase domains, wherein irreversible annihilation or joining of domains yields a growing characteristic domain length, is an omniprescent feature whose universal characteristics one would wish to understand. Driven kinetic Ising models and growing nano-faceted crystals are theoretically important examples of such Coarsening (Ageing) Dynamical Systems (CDS), since they additionally break thermodynamic uctuation-dissipation relations. Power-laws for the growth in time of the characteristic size of domains, and a concomitant scale-invariance of associated length distributions, have so frequently been empirically observed that their presence has acquired the status of a principle; the so-called Dynamic-Scaling Hypothesis. But the dynamical symmetries of a given CDS- its Coarsening Group G - may include more than the global spatio-temporal scalings underlying the Dynamic Scaling Hypothesis. In this talk, I will present a recently developed theoretical framework (Ref.[1]) that shows how the symmetry group G of a Coarsening (ageing) Dynamical System necessarily yields G-equivariance (covariance) of its universal statistical observables. We exhibit this theory for a variety of model systems, of both thermodynamic and driven type, with symmetries that may also be Emergent (Ref. [2,3]) and/or Hidden. We will close with a magical theoretical coarsening law that combines Lorentzian and Parabolic symmetries!

References
[1] Lorentzian symmetry predicts universality beyond scaling laws, SJ Watson, EPL 118 (5), 56001, (Aug.2, 2017) Editor's Choice
[2] Emergent parabolic scaling of nano-faceting crystal growth Stephen J. Watson, Proc. R. Soc. A 471: 20140560 (2015)
[3] Scaling Theory and Morphometrics for a Coarsening Multiscale Surface, via a Principle of Maximal Dissipation", Stephen

  • Industrial and Applied Mathematics Seminar

Pages