Past Industrial and Applied Mathematics Seminar

31 October 2019
16:00
to
17:30
Prof. Garegin Papoian
Abstract


One of the key unsolved challenges at the interface of physical and life sciences is to formulate comprehensive computational modeling of cells of higher organisms that is based on microscopic molecular principles of chemistry and physics. Towards addressing this problem, we have developed a unique reactive mechanochemical force-field and software, called MEDYAN (Mechanochemical Dynamics of Active Networks: http://medyan.org).  MEDYAN integrates dynamics of multiple mutually interacting phases: 1) a spatially resolved solution phase is treated using a reaction-diffusion master equation; 2) a polymeric gel phase is both chemically reactive and also undergoes complex mechanical deformations; 3) flexible membrane boundaries interact mechanically and chemically with both solution and gel phases.  In this talk, I will first outline our recent progress in simulating multi-micron scale cytosolic/cytoskeletal dynamics at 1000 seconds timescale, and also highlight the outstanding challenges in bringing about the capability for routine molecular modeling of eukaryotic cells. I will also report on MEDYAN’s applications, in particular, on developing a theory of contractility of actomyosin networks and also characterizing dissipation in cytoskeletal dynamics. With regard to the latter, we devised a new algorithm for quantifying dissipation in cytoskeletal dynamics, finding that simulation trajectories of entropy production provide deep insights into structural evolution and self-organization of actin networks, uncovering earthquake-like processes of gradual stress accumulation followed by sudden rupture and subsequent network remodeling.
 

  • Industrial and Applied Mathematics Seminar
24 October 2019
16:00
to
17:30
Abstract

Thin film flows of nematic liquid crystal will be considered, using the Leslie-Ericksen formulation for nematics. Our model can account for variations in substrate anchoring, which may exert a strong influence on patterns that arise in the flow. A number of simulations will be presented using an "in house" code, developed to run on a GPU. Current modeling directions involving flow over interlaced electrodes, so-called "dielectrowetting", will be discussed.

  • Industrial and Applied Mathematics Seminar
17 October 2019
15:30
to
17:00
Abstract

During this seminar, we will present a new mathematical model describing the transport of nitric oxide (NO) in a realistic geometrical representation of the lungs. Nitric oxide (NO) is naturally produced in the bronchial region of the lungs. It is a physiological molecule that has antimicrobial properties and allows the relaxation of muscles. It is well known that the measurement of the molar fraction of NO in the exhaled air, the so-called FeNO, allows a monitoring of asthmatic patients, since the production of this molecule in the lungs is increased in case of inflammation. However, recent clinical studies have shown that the amount of NO in the exhaled air can also be affected by « non-inflammatory » processes, such as the action of a bronchodilator or a respiratory physiotherapy session for a patient with cystic fibrosis. Using our new model, we will highlight the complex interplay between different transport phenomena in the lungs. More specifically, we will show why changes taking place in the deepest part of the lungs are expected to impact the FeNO. This gives a new light on the clinical studies mentioned below, allowing to confer a new role to the NO for the management of various pulmonary pathologies.

  • Industrial and Applied Mathematics Seminar
10 October 2019
16:00
to
17:30
Anna Seigal

Further Information: 

Our new Hooke fellow will introduce her research. 

Abstract

Tensors are higher dimensional analogues of matrices; they are used to record data with multiple changing variables. Interpreting tensor data requires finding low rank structure, and the structure depends on the application or context. Often tensors of interest define semi-algebraic sets, given by polynomial equations and inequalities. I'll give a characterization of the set of tensors of real rank two, and answer questions about statistical models using probability tensors and semi-algebraic statistics. I will also describe work on learning a path from its three-dimensional signature tensor. This talk is based on joint work with Guido Montúfar, Max Pfeffer, and Bernd Sturmfels.

  • Industrial and Applied Mathematics Seminar
20 June 2019
16:00
to
17:30
Dr. Benjamin Sobac
Abstract

When a liquid drop is deposited over a solid surface whose temperature is sufficiently above the boiling point of the liquid, the drop does not experience nucleate boiling but rather levitates over a thin layer of its own vapor. This is known as the Leidenfrost effect. Whilst highly undesirable in certain cooling applications, because of a drastic decrease of the energy transferred between the solid and the evaporating liquid due to poor heat conductivity of the vapor, this effect can be of great interest in many other processes profiting from this absence of contact with the surface that considerably reduces the friction and confers an extreme mobility on the drop. During this presentation, I hope to provide a good vision of some of the knowledge on this subject through some recent studies that we have done. First, I will present a simple fitting-parameter-free theory of the Leidenfrost effect, successfully validated with experiments, covering the full range of stable shapes, i.e., from small quasi-spherical droplets to larger puddles floating on a pocketlike vapor film. Then, I will discuss the end of life of these drops that appear either to explode or to take-off. Finally, I will show that the Leidenfrost effect can also be observed over hot baths of non-volatile liquids. The understanding of the latter situation, compare to the classical Leidenfrost effect on solid substrate, provides new insights on the phenomenon, whether it concerns levitation or its threshold.

  • Industrial and Applied Mathematics Seminar
13 June 2019
16:00
to
17:30
Dr Tom Shearer
Abstract

Tendons are vital connective tissues that anchor muscle to bone to allow the transfer of forces to the skeleton. They exhibit highly non-linear viscoelastic mechanical behaviour that arises due to their complex, hierarchical microstructure, which consists of fibrous subunits made of the protein collagen. Collagen molecules aggregate to form fibrils with diameters of tens to hundreds of nanometres, which in turn assemble into larger fibres called fascicles with diameters of tens to hundreds of microns. In this talk, I will discuss the relationship between the three-dimensional organisation of the fibrils and fascicles and the macroscale mechanical behaviour of the tendon. In particular, I will show that very simple constitutive behaviour at the microscale can give rise to highly non-linear behaviour at the macroscale when combined with geometrical effects.

 

  • Industrial and Applied Mathematics Seminar
30 May 2019
16:00
to
17:30
Angela Mihai
Abstract

Likely instabilities in stochastic hyperelastic solids

L. Angela Mihai

School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK

E-mail: MihaiLA@cardiff.ac.uk

 

Nonlinear elasticity has been an active topic of fundamental and applied research for several decades. However, despite numerous developments and considerable attention it has received, there are important issues that remain unresolved, and many aspects still elude us. In particular, the quantification of uncertainties in material parameters and responses resulting from incomplete information remain largely unexplored. Nowadays, it is becoming increasingly apparent that deterministic approaches, which are based on average data values, can greatly underestimate, or overestimate, mechanical properties of many materials. Thus, stochastic representations, accounting for data dispersion, are needed to improve assessment and predictions. In this talk, I will consider stochastic hyperelastic material models described by a strain-energy density where the parameters are characterised by probability distributions. These models, which are constructed through a Bayesian identification procedure, rely on the maximum entropy principle and enable the propagation of uncertainties from input data to output quantities of interest. Similar modelling approaches can be developed for other mechanical systems. To demonstrate the effect of probabilistic model parameters on large strain elastic responses, specific case studies include the classic problem of the Rivlin cube, the radial oscillatory motion of cylindrical and spherical shells, and the cavitation and finite amplitude oscillations of spheres.

  • Industrial and Applied Mathematics Seminar
23 May 2019
16:00
to
17:30
Dr. Murad Banaji
Abstract

Chemical reaction network (CRN) theory focusses on making claims about dynamical behaviours of reaction networks which are, as far as possible, dependent on the network structure but independent of model details such as functions chosen and parameter values. The claims are generally about the existence, nature and stability of limit sets, and the possibility of bifurcations, in models of CRNs with particular structural features. The methodologies developed can often be applied to large classes of models occurring in biology and engineering, including models whose origins are not chemical in nature. Many results have a natural algorithmic formulation. Apart from the potential for application, the results are often pleasing mathematically for their power and generality. 

This talk will concern some recent themes in CRN theory, particularly focussed on how the presence or absence of particular subnetworks ("motifs") influences allowed dynamical behaviours in ODE models of a CRN. A number of recent results take the form: "a CRN containing no subnetworks satisfying condition X cannot display behaviour of type Y"; but also, in the opposite direction, "if a CRN contains a subnetwork satisfying condition X, then some model of this CRN from class C admits behaviour of type Y". The proofs of such results draw on a variety of techniques from analysis, algebra, combinatorics, and convex geometry. I'll describe some of these results, outline their proofs, and sketch some current challenges in this area. 
 

  • Industrial and Applied Mathematics Seminar

Pages