There are a huge number of nonlinear partial differential equations that do not have analytic solutions. Often one can find similarity solutions, which reduce the number of independent variables, but still leads, generally, to a nonlinear equation. This can, only sometimes, be solved analytically. But always the solution is independent of the initial conditions. What role do they play? It is generally stated that the similarity solution agrees with the (not determined) exact solution when (for some variable say t) obeys t >> t_1. But what is t_1? How does it depend on the initial conditions? How large must t be for the similarity solution to be within 15, 10, 5, 1, 0.1, ….. percent of the real solution? And how does this depend on the parameters and initial conditions of the problem? I will explain how two such typical, but somewhat different, fundamental problems can be solved, both analytically and numerically, and compare some of the results with small scale laboratory experiments, performed during the talk. It will be suggested that many members of the audience could take away the ideas and apply them in their own special areas.

# Past Industrial and Applied Mathematics Seminar

Statements in media about record wave heights being measured are more and more common, the latest being about a record wave of almost 24m in the Southern Ocean on 9 May 2018. We will review some of these wave measurements and the various techniques to measure waves. Then we will explain the various mechanisms that can produce extreme waves both in wave tanks and in the ocean. We will conclude by providing the mechanism that, we believe, explains some of the famous extreme waves. Note that extreme waves are not necessarily rogue waves and that rogue waves are not necessarily extreme waves.

The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between flow and elastic deformation on a range of length scales.

I will illustrate the possibilities by considering theoretically and experimentally the injection and spread of viscous fluid beneath a flexible elastic lid; the injected fluid forms a blister, which spreads by peeling the lid away at the perimeter of the blister. Among the many questions to be considered are the mechanisms for relieving the elastic analogue of the contact-line problem, whether peeling is "by bending" or "by pulling", the stability of the peeling front, and the effects of a capillary meniscus when peeling is by air injection. The result is a plethora of dynamical regimes and asymptotic scaling laws.

Superhydrophobic surfaces, formed by air entrapment within the cavities of a hydrophobic solid substrate, offer a promising potential for drag reduction in small-scale flows. It turns out that low-drag configurations are associated with singular limits, which to date have typically been addressed using numerical schemes. I will discuss the application of singular perturbations to several of the canonical problems in the field.

Elastic gridshells arise from the buckling of an initially planar grid of rods. Architectural elastic gridshells first appeared in the 1970’s. However, to date, only a limited number of examples have been constructed around the world, primarily due to the challenges involved in their structural design. Yet, elastic gridshells are highly appealing: they can cover wide spans with low self-weight, they allow for aesthetically pleasing shapes and their construction is typically simple and rapid. A more mundane example is the classic pasta strainer, which, with its remarkably simple design, is a must-have in every kitchen.

This talk will focus on the geometry-driven nature of elastic gridshells. We use a geometric model based on the theory of discrete Chebyshev nets (originally developed for woven fabric) to rationalize their actuated shapes. Validation is provided by precision experiments and rod-based simulations. We also investigate the linear mechanical response (rigidity) and the non-local behavior of these discrete shells under point-load indentation. Combining experiments, simulations, and scaling analysis leads to a master curve that relates the structural rigidity to the underlying geometric and material properties. Our results indicate that the mechanical response of elastic gridshells, and their underlying characteristic forces, are dictated by Euler's elastica rather than by shell-related quantities. The prominence of geometry that we identify in elastic gridshells should allow for our results to transfer across length scales: from architectural structures to micro/nano–1-df mechanical actuators and self-assembly systems.

Tubing issues:

- Moving a sphere in a narrow pipe

What is the force required to move an object inside a narrow elastic pipe? The constriction by the tube induces a normal force on the sphere. In the case of solid friction, the pulling force may be simply deduced from Coulomb’s law. How does is such force modified by the addition of a lubricant? This coupled problem between elasticity and viscous flow results in a non-linear dependence of the force with the traction speed.

- Baromorphs

When a bicycle tyre is inflated the cross section of the pipe increases much more than its circumference. Can we use this effect to induce non-isotropic growth in a plate? We developed, through standard casting techniques, flat plates imbedded with a network of channels of controlled geometry. How are such plates deformed as pressure is applied to this network? Using a simplified mechanical model, 3D complex shapes can be programmed and dynamically actuated.

The talk originates from two studies on the dynamic properties of one-dimensional elastic quasicrystalline solids. The first one refers to a detailed investigation of scaling and self-similarity of the spectrum of an axial waveguide composed of repeated elementary cells designed by adopting the family of generalised Fibonacci substitution rules corresponding to the so-called precious means. For those, an invariant function of the circular frequency, the Kohmoto's invariant, governs self-similarity and scaling of the stop/pass band layout within defined ranges of frequencies at increasing generation index. The Kohmoto's invariant also explains the existence of particular frequencies, named canonical frequencies, associated with closed orbits on the geometrical three-dimensional representation of the invariant. The second part shows the negative refraction properties of a Fibonacci-generated quasicrystalline laminate and how the tuning of this phenomenon can be controlled by selecting the generation index of the sequence.

Most motile bacteria are equipped with multiple helical flagella, slender appendages whose rotation in viscous fluids allow the cells to self-propel. We highlight in this talk two consequences of hydrodynamics for bacteria. We first show how the swimming of cells with multiple flagella is enabled by an elastohydrodynamic instability. We next demonstrate how interactions between flagellar filaments mediated by the fluid govern the ability of the cells to reorient.

What if one desires to have a World perfectly slippery to water? What are the strategies that can be adopted? And how can smart slippery surfaces be created? In this seminar, I will outline approaches to creating slippery surfaces, which all involve reducing or removing droplet contact with the solid, whilst still supporting the droplet. The first concept is to decorate the droplet surface with particles, thus creating liquid marbles and converting the droplet-solid contact into a solid-solid contact. The second concept is to use the Leidenfrost effect to instantly vaporize a layer of water, thus creating a film of vapor and converting the droplet-solid contact into vapor-solid contact. The third concept is to infuse oil into the surface, thus creating a layer of oil and converting the droplet-solid contact into a lubricant-solid contact. I will also explain how we design such to have smart functionality whilst retaining and using the mobility of contact lines and droplets. I will show how Leidenfrost levitation can lead to new types of heat engines [1], how a microsystems approach to the Leidenfrost effect can reduce energy input and lead to a new type of droplet microfluidics [2] (Fig. 1a) and how liquid diodes can be created [3]. I will explain how lubricant impregnated surfaces lead to apparent contact angles [4] and how the large retained footprint of the droplet allows droplet transport and microfluidics using energy coupled via a surface acoustic wave (SAW) [5]. I will argue that droplets confined between reconfigurable slippery boundaries can be continuously translated in an energy invariant manner [6] (Fig. 1b). I will show that a droplet Cheerios effect induced by the menisci arising from structuring the underlying lubricated surface or by droplets in close proximity to each other can be used to guide and position droplets [7] (Fig. 1c). Finally, I will show that active control of droplet spreading by electric field induced control of droplet spreading, via electrowetting or dielectrowetting, can be achieved with little hysteresis [8] and can be a new method to investigate the dewetting of surfaces [9].

Figure 1 Transportation and positioning of droplets using slippery surfaces: (a) Localized Leidenfrost effect, (b) Reconfigurable boundaries, and (c) Droplet Cheerio’s effect.

Acknowledgements The financial support of the UK Engineering & Physical Sciences Research Council (EPSRC) and Reece Innovation ltd is gratefully acknowledged. Many collaborators at Durham, Edinburgh, Nottingham Trent and Northumbria Universities were instrumental in the work described.

[1] G.G. Wells, R. Ledesma-Aguilar, G. McHale and K.A. Sefiane, Nature Communications, 2015, 6, 6390.

[2] L.E. Dodd, D. Wood, N.R. Geraldi, G.G. Wells, et al., ACS Applied & Materials Interfaces, 2016, 8, 22658.

[3] J. Li, X. Zhou , J. Li, L. Che, J. Yao, G. McHale, et al., Science Advances, 2017, 3, eaao3530.

[4] C. Semprebon, G. McHale, and H. Kusumaatmaja, Soft Matter, 2017, 13, 101.

[5] J.T. Luo, N.R. Geraldi, J.H. Guan, G. McHale, et al., Physical Review Applied, 2017, 7, 014017.

[6] É. Ruiz-Gutiérrez, J.H. Guan, B.B. Xu, G. McHale, et al., Physical Review Letters, 2017, 118, 218003.

[7] J.H. Guan, É. Ruiz-Gutiérrez, B.B. Xu, D. Wood, G. McHale, et al., Soft Matter, 2017, 13, 3404.

[8] Z. Brabcová, G. McHale, G.G. Wells, et al., Applied Physics Letters, 2017, 110, 121603.

[9] A.M.J. Edwards, R. Ledesma-Aguilar, et al., Science Advances, 2016, 2, e1600183

A polymer, or microscopic elastic filament, is often modelled as a linear chain of rigid bodies interacting both with themselves and a heat bath. Then the classic notions of persistence length are related to how certain correlations decay with separation along the chain. I will introduce these standard notions in mathematical terms suitable for non specialists, and describe the standard results that apply in the simplest cases of wormlike chain models that have a straight, minimum energy (or ground or intrinsic) shape. Then I will introduce an appropriate splitting of a matrix recursion in the group SE(3) which deconvolves the distinct effects of stiffness and intrinsic shape in the more complicated behaviours of correlations that arise when the polymer is not intrinsically straight. The new theory will be illustrated by fully implementing it within a simple sequence-dependent rigid base pair model of DNA. In that particular context, the persistence matrix factorisation generalises and justifies the prior scalar notions of static and dynamic persistence lengths.