Past Junior Geometry and Topology Seminar

20 June 2019
16:00
Esteban Gomezllata Marmolejo
Abstract

Arakelov geometry studies schemes X over ℤ, together with the Hermitian complex geometry of X(ℂ).
Most notably, it has been used to give a proof of Mordell's conjecture (Faltings's Theorem) by Paul Vojta; curves of genus greater than 1 have at most finitely many rational points.
In this talk, we'll introduce some of the ideas behind Arakelov theory, and show how many results in Araklev theory are analogous—with additional structure—to classic results such as intersection theory and Riemann Roch.

  • Junior Geometry and Topology Seminar
13 June 2019
16:00
Jan Steinebrunner
Abstract

A cohomology class on the diffeomorphism group Diff(M) of a manifold M

can be thought of as a characteristic class for smooth M-bundles.
I will survey a technique for producing examples of such classes,
and then explain how the signature (of 4-manifolds) provides an
obstruction to this technique in dimension 3.

I will define Miller-Morita-Mumford classes and explain how we can
think of them as coming from classes on the cobordism category.
Madsen and Weiss showed that for a surface S of genus g all cohomology
classes
of the mapping class group MCG(S) (of degree < 2(g-2)/3) are MMM-classes.
This technique has been successfully ported to higher even dimensions d= 2n,
but it cannot possibly work in odd dimensions:
a theorem of Ebert says that for d=3 all MMM-classes are trivial.
In the second part of my talk I will sketch a new proof of (a part of)
Ebert's theorem.
I first recall the definition of the signature sign(W) of a 4 manifold W,
and some of its properties, such as additivity with respect to gluing.
Using the signature and an idea from the world of 1-2-3-TQFTs,
I then go on to define a 'central extension' of the three dimensional
cobordism category.
This central extension corresponds to a 2-cocycle on the 3d cobordism
category,
and we will see that the construction implies that the associated MMM-class
has to vanish on all 3-dimensional manifold bundles.

  • Junior Geometry and Topology Seminar
6 June 2019
16:00
Thomas Wasserman
Abstract

Topological quantum field theories (TQFTs) are an extensively studied scheme for constructing invariants of manifolds, inspired by physics. In this talk, we will discuss a particular flavour of TQFT, where we equip our manifolds with principal bundles for some finite group. After introducing TQFTs and this particular flavour, I will discuss games one can play with these TQFTs, and a possible strategy for classifying equivariant TQFTs in three dimensions. 

  • Junior Geometry and Topology Seminar
23 May 2019
16:00
Cristina Palmer-Anghel
Abstract

The world of quantum invariants began in 1983 with the discovery of the Jones polynomial. Later on, Reshetikhin and Turaev developed an algebraic machinery that provides knot invariants. This algebraic construction leads to a sequence of quantum generalisations of this invariant, called coloured Jones polynomials. The original Jones polynomial can be defined by so called skein relations. However, unlike other classical invariants for knots like the Alexander polynomial, its relation to the topology of the complement is still a mysterious and deep question. On the topological side, R. Lawrence defined a sequence of braid group representations on the homology of coverings of configuration spaces. Then, based on her work, Bigelow gave a topological model for the Jones polynomial, as a graded intersection pairing between certain homology classes. We aim to create a bridge between these theories, which interplays between representation theory and low dimensional topology. We describe the Bigelow-Lawrence model, emphasising the construction of the homology classes. Then, we show that the sequence of coloured Jones polynomials can be seen through the same formalism, as topological intersection pairings of homology classes in coverings of the configuration space in the punctured disc.

  • Junior Geometry and Topology Seminar
9 May 2019
16:00
Jacob Gross
Abstract

Gauge-theoretic invariants such as Donaldson or Seiberg–Witten invariants of 4-manifolds, Casson invariants of 3-manifolds, Donaldson–Thomas invariants of Calabi–Yau 3- and 4-folds, and putative Donaldson–Segal invariants of G_2 manifolds are defined by constructing a moduli space of solutions to an elliptic PDE as a (derived) manifold and integrating the (virtual) fundamental class against cohomology classes. For a moduli space to have a (virtual) fundamental class it must be compact, oriented, and (quasi-)smooth. We first describe a general framework for addressing orientability of gauge-theoretic moduli spaces due to Joyce–Tanaka–Upmeier. We then show that the moduli stack of perfect complexes of coherent sheaves on a Calabi–Yau 4-fold X is a homotopy-theoretic group completion of the topological realisation of the moduli stack of algebraic vector bundles on X. This allows one to extend orientations on the locus of algebraic vector bundles to the boundary of the (compact) moduli space of coherent sheaves using the universal property of homotopy-theoretic group completions. This is a necessary step in constructing Donaldson–Thomas invariants of Calabi–Yau 4-folds. This is joint work with Yalong Cao and Dominic Joyce.

  • Junior Geometry and Topology Seminar
2 May 2019
16:00
Abstract

Multiplicative preprojective algebras (MPAs) were originally defined by Crawley-Boevey and Shaw to encode solutions of the Deligne-Simpson problem as irreducible representations. 
MPAs have recently appeared in the literature from different perspectives including Fukaya categories of plumbed cotangent bundles (Etgü and Lekili) and, similarly, microlocal sheaves 
on rational curves (Bezrukavnikov and Kapronov.) After some motivation, I'll suggest a purely algebraic approach to study these algebras. Namely, I'll outline a proof that MPAs are 
2-Calabi-Yau if Q contains a cycle and an inductive argument to reduce to the case of the cycle itself.

  • Junior Geometry and Topology Seminar
7 March 2019
16:00
Moritz Oliver Meisel
Abstract

In this talk, I will sketch a geometrically flavoured proof of the 
Madsen-Weiss theorem based on work by Eliashberg-Galatius-Mishachev.
In order to prove the triviality of appropriate relative bordism groups, 
in a first step a variant of the wrinkling theorem shows
that one can reduce to consider fold maps (with additional structure). 
In a subsequent step, a geometric version of the Harer stability
theorem is used to get rid of the folds via surgery. I will focus on 
this second step.

  • Junior Geometry and Topology Seminar
28 February 2019
16:00
Filip Zivanovic
Abstract

Standard representation theory transforms groups=algebra into vector spaces = (linear) algebra. The modern approach, geometric representation theory constructs geometric objects from algebra and captures various algebraic representations through geometric gadgets/invariants on these objects. This field started with celebrated Borel-Weil-Bott and Beilinson-Bernstein theorems but equally is in rapid expansion nowadays. I will start from the very beginnings of this field and try to get to the recent developments (time permitting).

  • Junior Geometry and Topology Seminar

Pages