Past Junior Geometry and Topology Seminar

E.g., 2020-02-21
E.g., 2020-02-21
E.g., 2020-02-21
20 February 2020
15:00
Aurelio Carlucci
Abstract

This talk aims to provide a simple introduction on how to probe the
explicit geometry of certain moduli schemes arising in enumerative
geometry. Stable pairs, introduced by Pandharipande and Thomas in 2009, offer a curve-counting theory which is tamer than the Hilbert scheme of
curves used in Donaldson-Thomas theory. In particular, they exclude
curves with zero-dimensional or embedded components.

Ribbons are non-reduced schemes of dimension one, whose non-reduced
structure has multiplicity two in a precise sense. Following Ferrand, Banica, and Forster, there are several results on how to construct
ribbons (and higher non-reduced structures) from the data of line
bundles on a reduced scheme. With this approach, we can consider stable
pairs whose underlying curve is a ribbon: the remaining data is
determined by allowing devenerations of the line bundle defining the
double structure.

  • Junior Geometry and Topology Seminar
13 February 2020
15:00
Jef Laga
Abstract

In 2013, Bhargava-Shankar proved that (in a suitable sense) the average rank of elliptic curves over Q is bounded above by 1.5, a landmark result which earned Bhargava the Fields medal. Later Bhargava-Gross proved similar results for hyperelliptic curves, and Poonen-Stoll deduced that most hyperelliptic curves of genus g>1 have very few rational points. The goal of my talk is to explain how simple curve singularities and simple Lie algebras come into the picture, via a modified Grothendieck-Brieskorn correspondence.

Moreover, I’ll explain how this viewpoint leads to new results on the arithmetic of curves in families, specifically for certain families of non-hyperelliptic genus 3 curves.

  • Junior Geometry and Topology Seminar
6 February 2020
15:00
Tom Zielinski
Abstract

The Toda integrable system was originally designed as a specific model for lattice field theories. Following Kostant's insights, we will explain how it naturally arises from the representation theory of Lie algebras, and present some more recent work relating it to cotangent bundles of Lie groups and the topology of Affine Grassmannians.

  • Junior Geometry and Topology Seminar
28 November 2019
16:00
Michael Hallam
Abstract

A big problem in Riemannian geometry is the search for a "best possible" Riemannian metric on a given compact smooth manifold. When the manifold is complex, one very nice metric we could look for is a Kahler-Einstein metric. For compact Kahler manifolds with non-positive first chern class, these were proven to always exist by Aubin and Yau in the 70's. However, the case of positive first chern class is much more delicate, and there are non-trivial obstructions to existence. It wasn't until this decade that a complete abstract characterisation of Kahler-Einstein metrics became available, in the form of K-stability. This is a purely algebro-geometric stability condition, whose equivalence to the existence of a Kahler-Einstein metric in the Fano case is analogous to the Hitchin-Kobayashi correspondence for vector bundles. In this talk, I will cover the definition of K-stability, its relation to Kahler-Einstein metrics, and (time permitting) give some examples of how K-stability is verified or disproved in practice.

  • Junior Geometry and Topology Seminar
21 November 2019
16:00
Arkadij Bojko
Abstract

G. Dimitrov and L. Katzarkov introduced in their paper from 2016 the counting of non-commutative curves and their (semi-)stability using T. Bridgeland's stability conditions on triangulated categories. To some degree one could think of this as the non-commutative analog of Gromov-Witten theory. However, its full meaning has not yet been fully discovered. For example there seems to be a relation to proving Markov's conjecture. 

For the talk, I will go over the definitions of stability conditions, non-commutative curves and their counting. After developing some tools relying on working with exceptional collections, I will consider the derived category of representations on the acyclic triangular quiver and will talk about the explicit computation of the invariants for this example.

  • Junior Geometry and Topology Seminar
14 November 2019
16:00
to
17:30
Jacob Gross
Abstract

Recently, Joyce constructed a Ringel-Hall style graded vertex algebra on the homology of moduli stacks of objects in certain categories of algebro-geometric and representation-theoretic origin. The construction is most natural for 2n-Calabi-Yau categories. We present this construction and explain the geometric reason why it exists. If time permits, we will explain how to compute the homology of the moduli stack of objects in the derived category of a smooth complex projective variety and to identify it with a lattice-type vertex algebra.

  • Junior Geometry and Topology Seminar
24 October 2019
16:00
to
17:30
Jan Steinebrunner
Abstract

The homotopy bordism category hCob_d has as objects closed (d-1)-manifolds and as morphisms diffeomorphism classes of d-dimensional bordisms. This is a simplified version of the topologically enriched bordism category Cob_d whose classifying space B(Cob_d) been completely determined by Galatius-Madsen-Tillmann-Weiss in 2006. In comparison, little is known about the classifying space B(hCob_d).

In the first part of the talk I will give an introduction to bordism categories and their classifying spaces. In the second part I will identify B(hCob_1) showing, in particular, that the rational cohomology ring of hCob_1 is polynomial on classes \kappa_i in degrees 2i+2 for all i>=1. The seemingly simpler category hCob_1 hence has a more complicated classifying space than Cob_1.

  • Junior Geometry and Topology Seminar
17 October 2019
16:00
to
17:30
Filip Zivanovic
Abstract

Springer theory is an important branch of geometric representation theory. It is a beautiful interplay between combinatorics, geometry and representation theory.
It started with Springer correspondence, which yields geometric construction of irreducible representations of symmetric groups, and Ginzburg's construction of universal enveloping algebra U(sl_n).

Here I will present a view of two-row Springer theory of type A (thus looking at nilpotent elements with two Jordan blocks) from a scope of a symplectic topologist (hence the title), that yields connections between symplectic-topological invariants and link invariants (Floer homology and Khovanov homology) and connections to representation theory (Fukaya category and parabolic category O), thus summarising results by Abouzaid,
Seidel, Smith and Mak on the subject.

  • Junior Geometry and Topology Seminar

Pages