Past Logic Seminar

13 February 2020
11:30
Nick Ramsey
Abstract


 In Classification Theory, Shelah defined several cardinal invariants of a complete theory which detect the presence of certain trees among the definable sets, which in turn quantify the complexity of forking.  In later model-theoretic developments, local versions of these invariants were recognized as marking important dividing lines - e.g. simplicity and NTP2.  Around these dividing lines, a dichotomy theorem of Shelah states that a theory has the tree property if and only if it is witnessed in one of two extremal forms--the tree property of the first or second kind--and it was asked if there is a 'quantitative' analogue of this dichotomy in the form of a certain equation among these invariants.  We will describe these model-theoretic invariants and explain why the quantitative version of the dichotomy fails, via a construction that relies upon some unexpected tools from combinatorial set theory. 

 

6 February 2020
11:30
Jason Long
Abstract

 

Given a finite set X, is an easy exercise to show that a binary operation * from XxX to X which is injective in each variable separately, and which is also associative, makes (X,*) into a group. Hrushovski and others have asked what happens if * is only partially associative - do we still get something resembling a group? The answer is known to be yes (in a strong sense) if almost all triples satisfy the associative law. In joint work with Tim Gowers, we consider the so-called `1%' regime, in which we only have an epsilon fraction of triples satisfying the associative law. In this regime, the answer turns out to be rather more subtle, involving certain group-like structures which we call rough approximate groups. I will discuss these objects, and try to give a sense of how they arise, by describing a somewhat combinatorial interpretation of partial associativity.
 

23 January 2020
11:30
Kaisa Kangas
Abstract

 

We take a look at difference fields with several commuting automorphisms. The theory of difference fields with one distinguished automorphism has a model companion known as ACFA, which Zoe Chatzidakis and Ehud Hrushovski have studied in depth. However, Hrushovski has proved that if you look at fields with two or more commuting automorphisms, then the existentially closed models of the theory do not form a first order model class. We introduce a non-elementary framework for studying them. We then discuss how to generalise a result of Kowalski and Pillay that every definable group (in ACFA) virtually embeds into an algebraic group. This is joint work in progress with Zoe Chatzidakis and Nick Ramsey.

5 December 2019
11:30
Nicolas Daans
Abstract

   It is a long-standing open problem whether the ring of integers Z has an existential first-order definition in Q, the field of rational numbers. A few years ago, Jochen Koenigsmann proved that Z has a universal first-order definition in Q, building on earlier work by Bjorn Poonen. This result was later generalised to number fields by Jennifer Park and to global function fields of odd characteristic by Kirsten Eisenträger and Travis Morrison, who used classical machinery from number theory and class field theory related to the behaviour of quaternion algebras over global and local fields.


   In this talk, I will sketch a variation on the techniques used to obtain the aforementioned results. It allows for a relatively short and uniform treatment of global fields of all characteristics that is significantly less dependent on class field theory. Instead, a central role is played by Hilbert's Reciprocity Law for quaternion algebras. I will conclude with an example of a non-global set-up where the existence of a reciprocity law similarly yields universal definitions of certain subrings.

21 November 2019
11:30
Gabriel Conant
Abstract

I will present joint work with A. Pillay on the theory of NIP formulas in arbitrary groups, which exhibit a local formulation of the notion of finitely satisfiable generics (as defined by Hrushovski, Peterzil, and Pillay). This setting generalizes ``local stable group theory" (i.e., the study of stable formulas in groups) and also the case of arbitrary NIP formulas in pseudofinite groups. Time permitting, I will mention an application of these results in additive combinatorics.

7 November 2019
11:30
Vahagn Aslanyan
Abstract

I will present Pila's Modular Zilber-Pink with Derivatives (MZPD) conjecture, which is a Zilber-Pink type statement for the j-function and its derivatives, and discuss some weak and functional/differential analogues. In particular, I will define special varieties in each setting and explain the relationship between them. I will then show how one can prove the aforementioned weak/functional/differential MZPD statements using the Ax-Schanuel theorem for the j-function and its derivatives and some basic complex analytic geometry. Note that I gave a similar talk in Oxford last year (where I discussed a differential MZPD conjecture and proved it assuming an Existential Closedness conjecture for j), but this talk is going to be significantly different from that one (the approach presented in this talk will be mostly complex analytic rather than differential algebraic, and the results will be unconditional).

31 October 2019
11:30
Kobi Kremnitzer
Abstract

In this talk I will explain a category theoretic perspective on geometry.  Starting with a category of local objects (of and algebraic nature), and a (Grothendieck) 
topology on it, one can define global objects such as schemes and stacks. Examples of this  approach are algebraic, analytic, differential geometries and also more exotic geometries  such as analytic and differential geometry over the integers and analytic geometry over  the field with one element. In this approach the notion of a point is not primary but is  derived from the local to global structure. The Zariski and Huber spectra are recovered  in this way, and we also get new spectra which might be of interest in model theory.

6 June 2019
11:30
Shuddhodan Kadattur Vasudevan
Abstract

In 1996 using techniques from model theory and intersection theory, Hrushovski obtained a generalisation of the Lang-Weil estimates. Subsequently the estimates have found applications in group theory, algebraic dynamics and algebraic geometry. We shall discuss a geometric proof of the non-uniform version of these estimates.

23 May 2019
11:30
Alex Wilkie
Abstract

I will give an introduction to the theory of definable parameterization of definable sets in the o-minimal context and its application to diophantine problems. I will then go on to discuss uniformity issues with particular reference to the subanalytic case. This is joint work with Jonathan Pila and Raf Cluckers

Pages