Past Logic Seminar

22 October 2020
11:30
Gabriel Dill
Abstract

The Zilber-Pink conjecture predicts how large the intersection of a d-dimensional subvariety of an abelian variety/algebraic torus/Shimura variety/... with the union of special subvarieties of codimension > d can be (where the definition of "special" depends on the setting). In joint work with Fabrizio Barroero, we have reduced this conjecture for complex abelian varieties to the same conjecture for abelian varieties defined over the algebraic numbers. In work in progress, we introduce the notion of a distinguished category, which contains both connected commutative algebraic groups and connected mixed Shimura varieties. In any distinguished category, special subvarieties can be defined and a Zilber-Pink statement can be formulated. We show that any distinguished category satisfies the defect condition, introduced as a useful technical tool by Habegger and Pila. Under an additional assumption, which makes the category "very distinguished", we show furthermore that the Zilber-Pink statement in general follows from the case where the subvariety is defined over the algebraic closure of the field of definition of the distinguished variety. The proof closely follows our proof in the case of abelian varieties and leads also to unconditional results in the moduli space of principally polarized abelian surfaces as well as in fibered powers of the Legendre family of elliptic curves.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

11 June 2020
11:30
Boris Zilber
Abstract

This is a joint work with C.Daw in progress. We study the L_{omega_1,omega}-theory of the modular functions j_n: H -> Y(n). In other words, H is seen here as the universal cover in the class of modular curves. The setting is different from one considered before by Adam Harris and Chris Daw: GL(2,Q) is given here as the sort without naming its individual elements. As usual in the study of 'pseudo-analytic cover structures', the statement of categoricity is equivalent to certain arithmetic conditions, the most challenging of which is to determine the Galois action on CM-points. This turns out to be equivalent to determining the Galois action on SL(2,\hat{Z})/(-1), that is a subgroup of

Out SL(2,\hat{Z})/(-1)   induced by the action of  Gal_Q. We find by direct matrix calculations a subgroup Out_* of the outer automorphisms group which contains the image of Gal_Q. Moreover, we prove that Out_* is the image of Drinfeld's group GT (Grothendieck-Teichmuller group) under a natural homomorphism.

It is a reasonable to conjecture that Out_* is equal to the image of Gal_Q, which would imply the categoricity statement. It follows from the above that our conjecture is a consequence of Drinfeld's conjecture which states that GT is isomorphic to Gal_Q.  

 

 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

28 May 2020
11:30
Byunghan Kim
Abstract

Recently in a joint work with J. Dobrowolski and N. Ramsey it is shown that in any NSOP1 theory with existence,
Kim-independence satisfies all the basic axioms over sets (except base monotonicity) that hold in simple theories with forking-independence. This is an extension of the earlier work by I. Kaplan and N. Ramsey that such hold over models in any NSOP1 theory. All simple theories; unbounded PAC fields; vector spaces over ACF with bilinear maps; the model companion of the empty theory in any language are typical NSOP1 examples.

   An important issue now is to know the existence of canonical bases. In stable and simple theories well-behaving notion of canonical bases for types over models exists, which is used in almost all the advanced studies. But there are a couple of crucial obstacles in finding canonical bases in NSOP1 theories. In this talk I will report a partial success/limit of the project. Namely, a type of a certain Morley sequence over a model has the weak canonical base. In my talk I will try to explain all the related notions.

21 May 2020
11:30
Jan Dobrowolski
Abstract

 I will report on my recent work on dimension, definable groups, and definable fields in vector spaces over algebraically closed [real closed] fields equipped with a non-degenerate alternating bilinear form or a non-degenerate [positive-definite] symmetric bilinear form. After a brief overview of the background, I will discuss a notion of dimension and some other ingredients of the proof of the main result, which states that, in the above context, every definable group is (algebraic-by-abelian)-by-algebraic [(semialgebraic-by-abelian)-by-semialgebraic]. It follows from this result that every definable field is definable in the field of scalars, hence either finite or definably isomorphic to it [finite or algebraically closed or real closed].
 

12 May 2020
15:30
Anand Pillay

Further Information: 

Part of joint combinatorics - logic seminar.  See 

http://people.maths.ox.ac.uk/scott/dmp.htm

Abstract

This is joint with Gabe Conant. We give a structure theorem for finite subsets A of arbitrary groups G such that A has "small tripling" and "bounded VC dimension". Roughly, A will be a union of a bounded number of translates of a coset nilprogession of bounded rank and step (up to a small error).

7 May 2020
17:00
Pierre Simon
Abstract

I will present a conjectural picture of what a classification theory for NIP could look like, in the spirit of Shelah's classification theory for stable structures. Though most of it is speculative, there are some encouraging initial results about the lower levels of the classification, in particular concerning structures which, in some strong sense, do not contain trees.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

30 April 2020
11:30
Will Johnson
Abstract

The classification of NIP fields is a major open problem in model theory.  This talk will be an overview of an ongoing attempt to classify NIP fields of finite dp-rank.  Let $K$ be an NIP field that is neither finite nor separably closed.  Conjecturally, $K$ admits exactly one definable, valuation-type field topology (V-topology).  By work of Anscombe, Halevi, Hasson, Jahnke, and others, this conjecture implies a full classification of NIP fields.  We will sketch how this technique was used to classify fields of dp-rank 1, and what goes wrong in higher ranks.  At present, there are two main results generalizing the rank 1 case.  First, if $K$ is an NIP field of positive characteristic (and any rank), then $K$ admits at most one definable V-topology.  Second, if $K$ is an unstable NIP field of finite dp-rank (and any characteristic), then $K$ admits at least one definable V-topology.  These statements combine to yield the classification of positive characteristic fields of finite dp-rank. In characteristic 0, things go awry in a surprising way, and it becomes necessary to study a new class of "finite rank" field topologies, generalizing V-topologies.  The talk will include background information on V-topologies, NIP fields, and dp-rank.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

12 March 2020
11:30
Caroline Terry
Abstract

A hereditary graph property is a class of finite graphs closed under isomorphism and induced subgraphs.  Given a hereditary graph property H, the speed of H is the function which sends an integer n to the number of distinct elements in H with underlying set {1,...,n}.  Not just any function can occur as the speed of hereditary graph property.  Specifically, there are discrete ``jumps" in the possible speeds.  Study of these jumps began with work of Scheinerman and Zito in the 90's, and culminated in a series of papers from the 2000's by Balogh, Bollob\'{a}s, and Weinreich, in which essentially all possible speeds of a hereditary graph property were characterized.  In contrast to this, many aspects of this problem in the hypergraph setting remained unknown.  In this talk we present new hypergraph analogues of many of the jumps from the graph setting, specifically those involving the polynomial, exponential, and factorial speeds.  The jumps in the factorial range turned out to have surprising connections to the model theoretic notion of mutual algebricity, which we also discuss.  This is joint work with Chris Laskowski.

27 February 2020
11:30
François Loeser
Abstract

We will provide a general overview on some recent work on non-archimedean parametrizations and their applications. We will start by presenting our work with Cluckers and Comte on the existence of good Yomdin-Gromov parametrizations in the non-archimedean context and a $p$-adic Pila-Wilkie theorem.   We will then explain how this is used in our work with Chambert-Loir to prove bialgebraicity results in products of Mumford curves. 
 

Pages