Forthcoming events in this series


Thu, 18 Jan 2018
16:00
L6

Mazur's Eisenstein ideal

Carl Wang-Erickson
(Imperial College, London)
Abstract

In his landmark 1976 paper "Modular curves and the Eisenstein ideal", Mazur studied congruences modulo p between cusp forms and an Eisenstein series of weight 2 and prime level N. He proved a great deal about these congruences, and also posed some questions: how many cusp forms of a given level are congruent to the Eisenstein series? How big is the extension generated by their coefficients? In joint work with Preston Wake, we give an answer to these questions in terms of cup products (and Massey products) in Galois cohomology. Time permitting, we may be able to indicate some partial generalisations of Mazur's results to square-free level.

Thu, 30 Nov 2017
16:00
L6

A Galois counting problem

Sam Chow
(York)
Abstract

We count monic quartic polynomials with prescribed Galois group, by box height. Among other things, we obtain the order of magnitude for  quartics, and show that non-quartics are dominated by reducibles. Tools include the geometry of numbers, diophantine approximation, the invariant theory of binary forms, and the determinant method. Joint with Rainer Dietmann.

Thu, 23 Nov 2017
16:00
L6

The fundamental theorem of Weil II (for curves) with ultra product coefficients

Anna Cadoret
(Université Paris 6 (IMJ-PRG))
Abstract

l-adic cohomology was built to provide an etale cohomology with coefficients in a field of characteristic 0. This, via the Grothendieck trace formula, gives  a cohomological interpretation of L-functions - a fundamental tool in Deligne's theory of weights developed in Weil II. Instead of l-adic coefficients one can consider coefficients in ultra products of finite fields. I will state the fundamental theorem of Weil II for curves in this setting and explain briefly what are the difficulties to overcome to adjust Deligne's proof. I will then discuss how this ultra product variant of Weil II allows to extend to arbitrary coefficients  previous results of Gabber and Hui, Tamagawa and myself for constant $\mathbb{Z}_\ell$-coefficients.  For instance,  it implies that, in an $E$-rational compatible system of smooth $\overline{\mathbb{Q}}_\ell$-sheaves all what is true for $\overline{\mathbb{Q}}_\ell$-coefficients (semi simplicity, irreducibility, invariant dimensions etc) is true for $\overline{\mathbb{F}}_\ell$-coefficients provided $\ell$ is large enough or that the $\overline{\mathbb{Z}}_\ell$-models are unique with torsion-free cohomology provided $\ell$ is large enough.

Thu, 09 Nov 2017
16:00
L6

Probabilistic arithmetic geometry

Daniel Loughran
(Manchester)
Abstract

A famous theorem due to Erdős and Kac states that the number of prime divisors of an integer N behaves like a normal distribution. In this talk we consider analogues of this result in the setting of arithmetic geometry, and obtain probability distributions for questions related to local solubility of algebraic varieties. This is joint work with Efthymios Sofos.

Thu, 02 Nov 2017
16:00
L6

Norm relations and Euler systems

Christopher Skinner
(Princeton)
Abstract

This talk will report on the definition of some motivic cohomology classes and the proof that they satisfy the norm relations expected of Euler systems, emphasizing a connection with the local Gan-Gross-Prasad conjecture.

Thu, 26 Oct 2017
16:00
L6

Joint Number Theory / Logic Seminar: Virtual rigid motives of semi-algebraic sets in valued fields

Arthur Forey
(Institut de mathématiques de Jussieu)
Abstract

Let k be a field of characteristic zero and K=k((t)). Semi-algebraic sets over K are boolean combinations of algebraic sets and sets defined by valuative inequalities. The associated Grothendieck ring has been studied by Hrushovski and Kazhdan who link it via motivic integration to the Grothendieck ring of varieties over k. I will present a morphism from the former to the Grothendieck ring of motives of rigid analytic varieties over K in the sense of Ayoub. This allows to refine the comparison by Ayoub, Ivorra and Sebag between motivic Milnor fibre and motivic nearby cycle functor.
 

Thu, 19 Oct 2017
16:00
L6

Smooth values of polynomials

Trevor Wooley
(University of Bristol)
Abstract

Recall that an integer n is called y-smooth when each of its prime divisors is less than or equal to y. It is conjectured that, for any a>0,  any polynomial of positive degree having integral coefficients should possess infinitely many values at integral arguments n that are n^a-smooth. One could consider this problem to be morally “dual” to the cognate problem of establishing that irreducible polynomials assume prime values infinitely often, unless local conditions preclude this possibility. This smooth values conjecture is known to be true in several different ways for linear polynomials, but in general remains unproven for any degree exceeding 1. We will describe some limited progress in the direction of the conjecture, highlighting along the way analogous conclusions for polynomial smoothness. Despite being motivated by a problem in analytic number theory, most of the methods make use of little more than pre-Galois theory. A guest appearance will be made by several hyperelliptic curves. [This talk is based on work joint with Jonathan Bober, Dan Fretwell and Greg Martin].

Thu, 12 Oct 2017
16:00
L6

Heights and anabelian geometry

Alexander Betts
(Oxford)
Abstract

For a smooth variety over a number field, one defines various different homology groups (Betti, de Rham, etale, log-crystalline), which carry various kinds of enriching structure and are thought of as a system of realisations for a putative underlying (mixed) motivic homology group. Following Deligne, one can study fundamental groups in the same way, and the study of specific realisations of the motivic fundamental group has already found Diophantine applications, for instance in the anabelian proof of Siegel's theorem by Kim.

It is hoped that study of fundamental groups should give one access to ``higher'' arithmetic information not visible in the first cohomology, for instance classical and p-adic heights. In this talk, we will discuss recent work making this hope concrete, by demonstrating how local components of canonical heights on abelian varieties admit a natural description in terms of fundamental groups.

Thu, 15 Jun 2017
16:00
L6

Non-abelian reciprocity laws and higher Brauer-Manin obstructions

Jon Pridham
(Edinburgh)
Abstract

Kim's iterative non-abelian reciprocity laws carve out a sequence of subsets of the adelic points of a suitable algebraic variety, containing the global points. Like Ellenberg's obstructions to the existence of global points, they are based on nilpotent approximations to the variety. Systematically exploiting this idea gives a sequence starting with the Brauer-Manin obstruction, based on the theory of obstruction towers in algebraic topology. For Shimura varieties, nilpotent approximations are inadequate as the fundamental group is nearly perfect, but relative completions produce an interesting obstruction tower. For modular curves, these maps take values in Galois cohomology of modular forms, and give obstructions to an adelic elliptic curve with global Tate module underlying a global elliptic curve.

Thu, 08 Jun 2017
16:00
L6

Better than squareroot cancellation for multiplicative functions

Adam Harper
(Warwick)
Abstract

It is a standard heuristic that sums of oscillating number theoretic functions, like the M\"obius function or Dirichlet characters, should exhibit squareroot cancellation. It is often very difficult to prove anything as strong as that, and we generally expect that if we could prove squareroot cancellation it would be the best possible bound. I will discuss recent results showing that, in fact, certain averages of multiplicative functions exhibit a bit more than squareroot cancellation.

Thu, 01 Jun 2017
16:00
L6

Local epsilon-isomorphisms in families

Rebecca Bellovin
(Imperial College, London)
Abstract

Given a representation of Gal_{Q_p} with coefficients in a p-adically complete local ring R, Fukaya and Kato have conjectured the existence of a canonical trivialization of the determinant of a certain cohomology complex.  When R=Z_p and the representation is a lattice in a de Rham representation, this trivialization should be related to the \varepsilon-factor of the corresponding Weil--Deligne representation.  Such a trivialization has been constructed for certain crystalline Galois representations, by the work of a number of authors. I will explain how to extend these trivializations to certain families of crystalline Galois representations.  This is joint work with Otmar Venjakob.

Thu, 25 May 2017
16:00
L6

Reduction of dynatomic curves

Holly Krieger
(Cambridge)
Abstract

Dynatomic curves parametrize n-periodic orbits of a one-parameter family of polynomial dynamical systems. These curves lack the structure of their arithmetic-geometric analogues (modular curves of level n) but can be studied dynamically.  Morton and Silverman conjectured a dynamical analogue of the uniform boundedness conjecture (theorems of Mazur, Merel), asserting uniform bounds for the number of rational periodic points for such a family.  I will discuss recent work towards the function field version of their conjecture, including results on the reduction mod p of dynatomic curves for the quadratic polynomial family z^2+c.

Thu, 18 May 2017
16:00
L6

The Zilber-Pink conjecture for Shimura varieties

Christopher Daw
(University of Reading)
Abstract

In 2016, Habegger and Pila published a proof of the Zilber-Pink conjecture for curves in abelian varieties (all defined over $\mathbb{Q}^{\rm alg}$). Their article also contained a proof of the same conjecture for a product of modular curves that was conditional on a strong arithmetic hypothesis. Both proofs were extensions of the Pila-Zannier strategy based in o-minimality that has yielded many results in this area. In this talk, we will explain our generalisation of the strategy to the Zilber-Pink conjecture for any Shimura variety. This is joint work with J. Ren.

Thu, 11 May 2017
16:00
L6

Lifting theorems in Galois cohomology

Mathieu Florence
(Université Paris 6)
Abstract

The aim of this talk is to explain how to axiomatize Hilbert's Theorem 90, in the setting of (the cohomology with finite coefficients of) profinite groups. I shall first explain the general framework.  It includes, in particular, the use of divided power modules over Witt vectors; a process which appears to be of independent interest in the theory of modular representations. I shall then give several applications to Galois cohomology, notably to the problem of lifting mod p Galois representations (or more accurately: torsors under these) modulo higher powers of p. I'll also explain the connection with the Bloch-Kato conjecture in Galois cohomology, proved by Rost, Suslin and Voevodsky. This is joint work in progress with Charles De Clercq.

Thu, 04 May 2017
16:00
L6

Joint Number Theory/Logic Seminar: On the Hilbert Property and the fundamental group of algebraic varieties

Umberto Zannier
(Scuola Normale Superiore di Pisa)
Abstract

This  concerns recent work with P. Corvaja in which we relate the Hilbert Property for an algebraic variety (a kind of axiom linked with Hilbert Irreducibility, relevant e.g. for the Inverse Galois Problem)  with the fundamental group of the variety.
 In particular, this leads to new examples (of surfaces) of  failure of the Hilbert Property. We also prove the Hilbert Property for a non-rational surface (whereas all previous examples involved rational varieties).

Thu, 27 Apr 2017
16:00
L2

Automorphic Galois Representations attached to Inner Forms of $\mathrm{Sp}_{2n}$

Benjamin Green
(Oxford)
Abstract

In this talk, I will give a brief overview of the Langlands program and Langlands functoriality with reference to the examples of Galois representations attached to cusp forms and the Jacquet-Langlands correspondence for $\mathrm{GL}_2$. I will then explain how one can generalise this idea, sketching a proof of a Jacquet-Langlands type correspondence from $\mathrm{U}_n(B)$, where $B$ is a quaternion algebra, to $\mathrm{Sp}_{2n}$ and showing that one can attach Galois representations to regular algebraic cuspidal automorphic representations of $\mathrm{Sp}_{2n}$.
 

Thu, 09 Mar 2017

16:00 - 17:00
L6

Euclidean lattices of infinite rank and Diophantine applications

Jean-Benoît Bost
(Paris-Sud, Orsay)
Abstract

I will discuss the definitions and the basic properties of some infinite dimensional generalizations of Euclidean lattices and of their invariants defined in terms of theta series. Then I will present some of their applications to transcendence theory and Diophantine geometry.

Thu, 02 Mar 2017

16:15 - 17:15
L6

Minimal weights of mod-p Hilbert modular forms

Payman Kassaei
(Kings College London)
Abstract

I will discuss results on the characterization of minimal weights of mod-p Hilbert modular forms using results on stratifications of Hilbert Modular Varieties.  This is joint work with Fred Diamond.

Thu, 23 Feb 2017
16:00
L6

Wach modules, regulator maps, and ε-isomorphisms in families

Otmar Venjakob
(Heidelberg)
Abstract

In this talk on joint work with REBECCA BELLOVIN we discuss the “local ε-isomorphism” conjecture of Fukaya and Kato for (crystalline) families of G_{Q_p}-representations. This can be regarded as a local analogue of the global Iwasawa main conjecture for families, extending earlier work of Kato for rank one modules, of Benois and Berger for crystalline representations with respect to the cyclotomic extension as well as of Loeffler, Venjakob and Zerbes for crystalline representations with respect to abelian p-adic Lie extensions of Q_p. Nakamura has shown Kato’s - conjecture for (ϕ,\Gamma)-modules over the Robba ring, which means in particular only after inverting p, for rank one and trianguline families. The main ingredient of (the integrality part of) the proof consists of the construction of families of Wach modules generalizing work of Wach and Berger and following Kisin’s approach via a corresponding moduli space.
 

Thu, 16 Feb 2017

16:00 - 17:00
L6

P-adic representations attached to vector bundles on smooth complete p-adic varieties

Christopher Deninger
(Münster)
Abstract

We discuss vector bundles with numerically stable reduction on smooth complete varieties over a p-adic number field and sketch the construction of associated p-adic representations of the geometric fundamental group. On projective varieties, such bundles are semistable with respect to every polarization and have vanishing Chern classes. One of the main problems in the construction consisted in getting rid of infinitely many obstruction classes. This is achieved by adapting a theory of Bhatt based on de Jongs's alteration method. One also needs control over numerically flat bundles on arbitrary singular varieties over finite fields. The singular Riemann Roch Theorem of Baum Fulton Macpherson is a key ingredient for this step. This is joint work with Annette Werner.
 

Thu, 09 Feb 2017

16:00 - 17:00
L6

A logarithmic interpretation of Edixhoven's jumps for Jacobians

Johannes Nicaise
(Imperial College London)
Abstract

Let A be an abelian variety over a strictly henselian discretely valued field K. In his 1992 paper "Néron models and tame ramification", Edixhoven has constructed a filtration on the special fiber of the Néron model of A that measures the behaviour of the Néron model with respect to tamely ramified extensions of K. The filtration is indexed by rational numbers in [0,1], and if A is wildly ramified, it is an open problem whether the places where it jumps are always rational. I will explain how an interpretation of the filtration in terms of logarithmic geometry leads to explicit formulas for the jumps in the case where A is a Jacobian, which confirms in particular that they are rational. This is joint work with Dennis Eriksson and Lars Halvard Halle.

Thu, 02 Feb 2017

16:00 - 17:00
L6

Finding Arithmetic Implications of Mirror Symmetry

Tyler Kelly
(Cambridge)
Abstract

Mirror symmetry is a duality from string theory that states that given a Calabi-Yau variety, there exists another Calabi-Yau variety so that various geometric and physical data are exchanged. The investigation of this mirror correspondence has its roots in enumerative geometry and hodge theory, but has been later interpreted by Kontsevich in a categorical setting. This exchange in data is very powerful, and has been shown to persist for zeta functions associated to Calabi-Yau varieties, although there is no rigorous statement for what arithmetic mirror symmetry would be. Instead of directly trying to state and prove arithmetic mirror symmetry, we will instead use mirror symmetry as an intuitional framework to obtain arithmetic results for special Calabi-Yau pencils in projective space from the Hodge theoretic viewpoint. If time permits, we will discuss work in progress in starting to find arithmetic implications of Kontsevich's Homological Mirror Symmetry.

Thu, 26 Jan 2017

16:00 - 17:00
L6

CANCELED: Wach modules, regulator maps, and ε-isomorphisms in families

Otmar Venjakob
(Heidelberg)
Abstract

In this talk on joint work with REBECCA BELLOVIN we discuss the “local ε-isomorphism” conjecture of Fukaya and Kato for (crystalline) families of G_{Q_p}-representations. This can be regarded as a local analogue of the global Iwasawa main conjecture for families, extending earlier work of Kato for rank one modules, of Benois and Berger for crystalline representations with respect to the cyclotomic extension as well as of Loeffler, Venjakob and Zerbes for crystalline representations with respect to abelian p-adic Lie extensions of Q_p. Nakamura has shown Kato’s - conjecture for (ϕ,\Gamma)-modules over the Robba ring, which means in particular only after inverting p, for rank one and trianguline families. The main ingredient of (the integrality part of) the proof consists of the construction of families of Wach modules generalizing work of Wach and Berger and following Kisin’s approach via a corresponding moduli space.
 

Thu, 19 Jan 2017
16:00
L6

Joint Logic/Number Theory Seminar: Formality and higher Massey products in Galois cohomology

Adam Topaz
(Oxford)
Abstract

There are several conjectures in the literature suggesting that absolute Galois groups of fields tend to be "as free as possible," given their "almost-abelian" data.
This can be made precise in various ways, one of which is via the notion of "1-formality" arising in analogy with the concept in rational homotopy theory.
In this talk, I will discuss several examples which illustrate this phenomenon, as well as some surprising diophantine consequences.
This discussion will also include some recent joint work with Guillot, Mináč, Tân and Wittenberg, concerning the vanishing of mod-2 4-fold Massey products in the Galois cohomology of number fields.

Thu, 01 Dec 2016
16:00
L6

Random waves on the three-dimensional torus and correlations of spherical lattice points

Jacques Benatar
(King's College London)
Abstract

I will discuss some recent work, joint with R. Maffucci, concerning random Laplace eigenfunctions on the torus T^3=R^3/Z^3. Studying various statistics of these 'random waves' we will be confronted with an arithmetic question about linear relations among integer points on spheres.

Thu, 24 Nov 2016
16:00
L6

On the standard L-function attached to Siegel-Jacobi modular forms of higher index

Thanasis Bouganis
(Durham University)
Abstract

In this talk we will start by introducing the notion of Siegel-Jacobi modular form and explain its close relation to Siegel modular forms through the Fourier-Jacobi expansion. Then we will discuss how one can attach an L-function to an appropriate (i.e. eigenform) Siegel-Jacobi modular form due to Shintani, and report on joint work with Jolanta Marzec on analytic properties of this L-function, extending results of Arakawa and Murase. 

Thu, 17 Nov 2016
16:00
L6

Correlations of multiplicative functions

Oleksiy Klurman
(University College London)
Abstract


We develop the asymptotic formulas for correlations  
\[ \sum_{n\le x}f_1(P_1(n))f_2(P_2(n))\cdot \dots \cdot f_m(P_m(n))\]

where $f_1,\dots,f_m$ are bounded ``pretentious" multiplicative functions, under certain natural hypotheses. We then deduce several desirable consequences: first, we characterize all multiplicative functions $f:\mathbb{N}\to\{-1,+1\}$ with bounded partial sums. This answers a question of Erd{\"o}s from $1957$ in the form conjectured by Tao. Second, we show that if the average of the first divided difference of multiplicative function is zero, then either $f(n)=n^s$ for $\operatorname{Re}(s)<1$ or $|f(n)|$ is small on average. This settles an old conjecture of K\'atai. Third, we discuss applications to the study of sign patterns of $(f(n),f(n+1),f(n+2))$ and $(f(n),f(n+1),f(n+2),f(n+3))$ where $f:\mathbb{N}\to \{-1,1\}$ is a given multiplicative function. If time permits, we discuss multidimensional version of some of the results mentioned above.
 

Thu, 10 Nov 2016
16:00
L6

Effective equidistribution of rational points on expanding horospheres

Min Lee
(University of Bristol)
Abstract

The equidistribution theorem for rational points on expanding horospheres with fixed denominator in the space of d-dimensional Euclidean lattices has been derived in the work by M. Einsiedler, S. Mozes, N. Shah and U. Shapira. The proof of their theorem requires ergodic theoretic tools, including Ratner's measure classification theorem. In this talk I will present an alternative approach, based on harmonic analysis and Weil's bound for Kloosterman sums. In the case of d=3, unlike the ergodic-theoretic approach, this provides an explicit estimate on the rate of convergence. This is a joint work with Jens Marklof. 

Thu, 03 Nov 2016
16:00
L6

Arithmetic applications of $\omega$-integral curves in varieties (Joint with Logic)

Natalia Garcia-Fritz
(University of Toronto)
Abstract

In 2000, Vojta solved the n-squares problem under the Bombieri-Lang conjecture, by explicitly finding all the curves of genus 0 or 1 on the surfaces related to this problem. The fundamental notion used by him is $\omega$-integrality of curves. 


In this talk, I will show a generalization of Vojta's method to find all curves of low genus in some surfaces, with arithmetic applications.


I will also explain how to use $\omega$-integrality to obtain a bound of the height of a non-constant morphism from a curve to $\mathbb{P}^2$ in terms of the number of intersections (without multiplicities) of its image with a divisor of a particular kind.
This proves some new special cases of Vojta's conjecture for function fields.
 

Thu, 27 Oct 2016
16:00
L6

On Hodge-Tate local systems

Ahmed Abbes
(Institut des Hautes Etudes Scientifiques)
Abstract

I will revisit the theory of Hodge-Tate local systems in the light of the p-adic Simpson correspondence. This is a joint work with Michel Gros.

Thu, 20 Oct 2016
16:00
L6

An Arithmetic Chern-Simons Invariant

Minhyong Kim
(Oxford)
Abstract

Abstract: We will recall some analogies between structures arising from three-manifold topology and rings of integers in number fields. This can be used to define a Chern-Simons functional on spaces of Galois representations.  Some sample computations and elementary applications will be shown.

Thu, 13 Oct 2016
16:00
L6

Representation of integers by binary forms

Stanley Yao Xiao
(Oxford)
Abstract

Let $F$ be a binary form of degree $d \geq 3$ with integer coefficients and non-zero discriminant. In this talk we give an asymptotic formula for the quantity $R_F(Z)$, the number of integers in the interval $[-Z,Z]$ representable by the binary form $F$.

This is joint work with C.L. Stewart.

Thu, 16 Jun 2016
16:00
L6

Gaps Between Smooth Numbers

Roger Heath-Brown
(Oxford University)
Abstract

Let $a_1, \cdots, a_N$ be the sequence of y-smooth numbers up to x (i.e. composed only of primes up to y). When y is a small power of x, what can one say about the size of the gaps $a_{j+1}-a_j$? In particular, what about

$$\sum_1^N (a_{j+1}-a_j)^2?$$

Thu, 09 Jun 2016
16:00
L6

Almost Primes in Almost all Short Intervals

Joni Teräväinen
(University of Turku)
Abstract

When considering $E_k$ numbers (products of exactly $k$ primes), it is natural to ask, how they are distributed in short intervals. One can show much stronger results when one restricts to almost all intervals. In this context,  we seek the smallest value of c such that the intervals $[x,x+(\log x)^c]$ contain an $E_k$ number almost always. Harman showed that $c=7+\varepsilon$ is admissible for $E_2$ numbers, and this was the best known result also for $E_k$ numbers with $k>2$.

We show that for $E_3$ numbers one can take $c=1+\varepsilon$, which is optimal up to $\varepsilon$. We also obtain the value $c=3.51$ for $E_2$ numbers. The proof uses pointwise, large values and mean value results for Dirichlet polynomials as well as sieve methods.

Thu, 02 Jun 2016
16:00
L6

The Hasse norm principle for abelian extensions

Rachel Newton
(University of Reading)
Abstract

Let $L/K$ be an extension of number fields and let $J_L$ and $J_K$ be the associated groups of ideles. Using the diagonal embedding, we view $L^*$ and $K^*$ as subgroups of $J_L$ and $J_K$ respectively. The norm map $N: J_L\to  J_K$ restricts to the usual field norm $N: L^*\to K^*$ on $L^*$. Thus, if an element of $K^*$ is a norm from $L^*$, then it is a norm from $J_L$. We say that the Hasse norm principle holds for $L/K$ if the converse holds, i.e. if every element of $K^*$ which is a norm from $J_L$ is in fact a norm from $L^*$. 

The original Hasse norm theorem states that the Hasse norm principle holds for cyclic extensions. Biquadratic extensions give the smallest examples for which the Hasse norm principle can fail. One might ask, what proportion of biquadratic extensions of $K$ fail the Hasse norm principle? More generally, for an abelian group $G$, what proportion of extensions of $K$ with Galois group $G$ fail the Hasse norm principle? I will describe the finite abelian groups for which this proportion is positive. This involves counting abelian extensions of bounded discriminant with infinitely many local conditions imposed, which is achieved using tools from harmonic analysis.

This is joint work with Christopher Frei and Daniel Loughran.

Thu, 26 May 2016
16:00
L6

Sub-convexity in certain Diophantine problems via the circle method

Trevor Wooley
(University of Bristol)
Abstract

The sub-convexity barrier traditionally prevents one from applying the Hardy-Littlewood (circle) method to Diophantine problems in which the number of variables is smaller than twice the inherent total degree. Thus, for a homogeneous polynomial in a number of variables bounded above by twice its degree, useful estimates for the associated exponential sum can be expected to be no better than the square-root of the associated reservoir of variables. In consequence, the error term in any application of the circle method to such a problem cannot be expected to be smaller than the anticipated main term, and one fails to deliver an asymptotic formula. There are perishingly few examples in which this sub-convexity barrier has been circumvented, and even fewer having associated degree exceeding two. In this talk we review old and more recent progress, and exhibit a new class of examples of Diophantine problems associated with, though definitely not, of translation-invariant type.

Thu, 19 May 2016
16:00
L6

On the distribution modulo one of $\alpha p^k$

Roger Baker
(Brigham Young University)
Abstract

For $k \geq 3$ we give new values of $\rho_k$ such that
$$ \| \alpha p^k + \beta \| < p^{-\rho_k} $$
has infinitely many solutions in primes whenever $\alpha$ is irrational and $\beta$ is real. The mean
value results of Bourgain, Demeter, and Guth are useful for $k \geq 6$; for all $k$, the results also
depend on bounding the number of solutions of a congruence of the form

$$ \left\| \frac{sy^k}{q} \right\| < \frac{1}{Z} \ \ (1 \leq y \leq Y < q) $$

where $q$ is a given large natural number.

Thu, 12 May 2016
16:00
L6

(Joint with logic) Two models for the hyperbolic plane and existence of the Poincaré metric on compact Riemann surfaces

Norbert A’Campo
(University of Basel)
Abstract
An implicite definition for the hyperbolic plane $H=H_I$ is in: ${\rm Spec}(\mathbb{R}[X]) = H_I \cup \mathbb{R}$. All geometric hyperbolic features will follow from this definition in an elementary way.
 
A second definition is $H=H_J=\{J \in {\rm End}(R^2) \mid J^2=-Id, dx \wedge dy(u,Ju) \geq 0 \}$. Working with $H=H_J$ allows to prove rather directly main theorems about Riemann surfaces.
Thu, 05 May 2016
16:00
L6

Eigenvarieties for non-cuspidal Siegel modular forms

Giovanni Rosso
(University of Cambridge)
Abstract

In a recent work Andreata, Iovita, and Pilloni constructed the eigenvariety for cuspidal Siegel modular forms. This eigenvariety has the expected dimension (the genus of the Siegel forms) but it parametrizes only cuspidal forms. We explain how to generalize the construction to the non-cuspidal case. To be precise, we introduce the notion of "degree of cuspidality" and we construct an eigenvariety that parametrizes forms of a given degree of cuspidability. The dimension of these eigenvarieties depends on the degree of cuspidality we want to consider: the more non-cuspidal the forms, the smaller the dimension. This is a joint work with Riccardo Brasca.

Thu, 28 Apr 2016
16:00
L6

From Sturm, Sylvester, Witt and Wall to the present day

Andrew Ranicki
(University of Edinburgh)
Abstract

The talk will be based on some of the material in the joint survey with Etienne Ghys

"Signatures in algebra, topology and dynamics"

http://arxiv.org/abs/1512.092582

In the 19th century Sturm's theorem on the number of roots of a real polynomial motivated Sylvester to define the signature of a quadratic form. In the 20th century the classification of quadratic forms over algebraic number fields motivated Witt to introduce the "Witt groups" of stable isomorphism classes of quadratic forms over arbitrary fields. Still in the 20th century the study of high-dimensional topological manifolds with nontrivial fundamental group motivated Wall to introduce the "Wall groups" of stable isomorphism classes of quadratic forms over arbitrary rings with involution. In our survey we interpreted Sturm's theorem in terms of the Witt-Wall groups of function fields. The talk will emphasize the common thread running through this developments, namely the notion of the localization of a ring inverting elements. More recently, the Cohn localization of inverting matrices over a noncommutative ring has been applied to topology in the 21st century, in the context of the speaker's algebraic theory of surgery.

 

Thu, 10 Mar 2016

16:00 - 17:00
L5

On the number of nodal domains of toral eigenfunctions

Igor Wigman
(King's College London)
Abstract

We study the number of nodal domains of toral Laplace eigenfunctions. Following Nazarov-Sodin's results for random fields and Bourgain's de-randomisation procedure we establish a precise asymptotic result for "generic" eigenfunctions. Our main results in particular imply an optimal lower bound for the number of nodal domains of generic toral eigenfunctions.

Thu, 03 Mar 2016

16:00 - 17:00
L2

Hecke eigenvalue congruences and experiments with degree-8 L-functions

Neil Dummigan
(University of Sheffield)
Abstract

I will describe how the moduli of various congruences between Hecke eigenvalues of automorphic forms ought to show up in ratios of critical values of $\text{GSP}_2 \times \text{GL}_2$ L-functions. To test this experimentally requires the full force of Farmer and Ryan's technique for approximating L-values given few coefficients in the Dirichlet series.

Thu, 25 Feb 2016

16:00 - 17:00
L2

Badly approximable points

Victor Beresnevich
(University of York)
Abstract

I will discuss the notion of badly approximable points and recent progress and problems in this area, including Schmidt's conjecture, badly approximable points on manifolds and real numbers badly approximable by algebraic numbers.

Thu, 18 Feb 2016

16:00 - 17:00
L5

(Joint Number Theory and Logic) On a modular Fermat equation

Jonathan Pila
(University of Oxford)
Abstract

I will describe some diophantine problems and results motivated by the analogy between powers of the modular curve and powers of the multiplicative group in the context of the Zilber-Pink conjecture.

Thu, 04 Feb 2016

16:00 - 17:00
L5

Strongly semistable sheaves and the Mordell-Lang conjecture over function fields

Damian Rössler
(University of Oxford)
Abstract

We shall describe a new proof of the Mordell-Lang conjecture in positive characteristic, in the situation where the variety under scrutiny is a smooth subvariety of an abelian variety. 
Our proof is based on the theory of semistable sheaves in positive characteristic, in particular on  Langer's theorem that the Harder-Narasimhan filtration of sheaves becomes strongly semistable after a finite number of iterations of Frobenius pull-backs. Our proof produces a numerical upper-bound for the degree of the finite morphism from an isotrivial variety appearing in the statement of the Mordell-Lang conjecture. This upper-bound is given in terms of the Frobenius-stabilised slopes of the cotangent bundle of the variety.

Thu, 28 Jan 2016

16:00 - 17:00
L5

Iwasawa theory for the symmetric square of a modular form

David Loeffler
(University of Warwick)
Abstract

Iwasawa theory is a powerful technique for relating the behaviour of arithmetic objects to the special values of L-functions. Iwasawa originally developed this theory in order to study the class groups of number fields, but it has since been generalised to many other settings. In this talk, I will discuss some new results in the Iwasawa theory of the symmetric square of a modular form. This is a joint project with Sarah Zerbes, and the main tool in this work is the Euler system of Beilinson-Flach elements, constructed in our earlier works with Kings and Lei.

Thu, 21 Jan 2016

16:00 - 17:00
L5

Height of rational points on elliptic curves in families

Pierre Le Boudec
(EPFL (Ecole Polytechnique Federale de Lausanne))
Abstract

Given a family $F$ of elliptic curves defined over $Q$, we are interested in the set $H(Y)$ of curves $E$ in $F$, of positive rank, and for which the minimum of the canonical heights of non-torsion rational points on $E$ is bounded by some parameter $Y$. When one can show that this set is finite, it is natural to investigate statistical properties of arithmetic objects attached to elliptic curves in the set $H(Y)$. We will describe some problems related to this, and will state some results in the case of families of quadratic twists of a fixed elliptic curve.

Mon, 18 Jan 2016

16:00 - 17:00
L3

4th moment of quadratic Dirichlet L-functions in function fields

Alexandra Florea
(Stanford University)
Abstract

We discuss moments of $L$-functions in function fields, in the hyperelliptic ensemble, focusing on the fourth moment of quadratic Dirichlet $L$-functions at the critical point. We explain how to obtain an asymptotic formula with some of the secondary main terms.

Thu, 03 Dec 2015

16:00 - 17:00
L5

Galois theory of periods and applications

Francis Brown
(University of Oxford)
Abstract

A period is a certain type of number obtained by integrating algebraic differential forms over algebraic domains. Examples include pi, algebraic numbers, values of the Riemann zeta function at integers, and other classical constants.
Difficult transcendence conjectures due to Grothendieck suggest that there should be a Galois theory of periods.
I will explain these notions in very introductory terms and show how to set up such a Galois theory in certain situations.
I will then discuss some applications, in particular to Kim's method for bounding $S$-integral solutions to the equation $u+v=1$, and possibly to high-energy physics.