Forthcoming events in this series


Thu, 24 Oct 2019

16:00 - 17:00
L6

L-functions of Kloosterman sums

Javier Fresán
(Ecole Polytechnique)
Abstract

Guided by the analogy with certain moments of the Bessel function that appear as Feynman integrals, Broadhurst and Roberts recently studied a family of L-functions built up by assembling symmetric power moments of Kloosterman sums over finite fields. I will prove that these L-functions arise from potentially automorphic motives over the field of rational numbers, and hence admit a meromorphic continuation to the complex plane that satisfies the expected functional equation. If time permits, I will identify the periods of the corresponding motives with the Bessel moments and make a few comments about the special values of the L-functions. This is a joint work with Claude Sabbah and Jeng-Daw Yu.

Thu, 17 Oct 2019
16:00
L6

One-level density of Dirichlet L-functions

Kyle Pratt
(Oxford)
Abstract

I will discuss work in progress with Sary Drappeau and Maksym Radziwill on low-lying zeros of Dirichlet L-functions. By way of motivation I will discuss some results on the spacings of zeros of the Riemann zeta function, and the conjectures of Katz and Sarnak relating the distribution of low-lying zeros of L-functions to eigenvalues of random matrices. I will then describe some ideas behind the proof of our theorem.
 

Thu, 20 Jun 2019

16:00 - 17:00
L6

Explicit Non-Abelian Chabauty via Motivic Periods

David Corwin
(UC Berkeley)
Abstract

We report on a line of work initiated by Dan-Cohen and Wewers and continued by Dan-Cohen and the speaker to explicitly compute the zero loci arising in Kim's non-abelian Chabauty's method. We explain how this works, an important step of which is to compute bases of a certain motivic Hopf algebra in low degrees. We will summarize recent work by Dan-Cohen and the speaker, extending previous computations to $\mathbb{Z}[1/3]$ and proposing a general algorithm for solving the unit equation. Many of the methods in the more recent work are inspired by recent ideas of Francis Brown. Finally, we indicate future work, in which we hope to use elliptic motivic periods to explicitly compute points on punctured elliptic curves and beyond.

Thu, 13 Jun 2019

16:00 - 17:00
L6

Arakelov theory on degenerating curves

Gerd Faltings
(University of Bonn and MPIM)
Abstract

We compute the asymptotics of Arakelov functions if smooth curves degenerate to semistable singular curves. The motivation was to determine whether the delta function defines a metric on the boundary of moduli space. In fact things are slightly more complicated. The main result states that the asymptotics is mostly governed by the graph associated to the degeneration, with some subleties. The topic has been also treated by R. deJong and my student R. Wilms.

Thu, 06 Jun 2019

16:00 - 17:00
L6

A non-abelian algebraic criterion for good reduction of curves

Valentina DiProietto
(University of Exeter)
Abstract


For a family of proper hyperbolic complex curves $f: X \longrightarrow \Delta^*$ over a puntured disc $\Delta^*$ with semistable reduction at the center, Oda proved, with transcendental methods, that the outer monodromy action of $\pi_1(\Delta^*) \cong \mathbb{Z}$ on the classical unipotent fundamental group of the generic fiber of $f$ is trivial if and only if $f$ has good reduction at the center. In this talk I explain a joint work with B. Chiarellotto and A. Shiho in which we give a purely algebraic proof of Oda's result.

Thu, 30 May 2019

16:00 - 17:00
L6

Fourier expansions at cusps and the Manin constant of elliptic curves

Michalis Neururer
(TU Darmstadt)
Abstract

I will discuss the arithmetic significance of Fourier expansions of modular forms at cusps. I will talk about joint work with F. Brunault, where we determine the number field generated by Fourier coefficients of newforms at a cusp. Then I will discuss joint work with A. Saha and K. Česnavičius where we find denominator bounds for Fourier expansions at cusps and apply these bounds to a conjecture on the Manin constants of elliptic curves.

Thu, 23 May 2019

16:00 - 17:00
L6

The Sum-Product Phenomenon

George Shakan
(Oxford University)
Abstract

In 1983, Erdos and Szemerédi conjectured that for any finite subset of the integers, either the sumset or the product set has nearly quadratic growth. Applications include incidence geometry, exponential sums, compressed image sensing, computer science, and elsewhere. We discuss recent progress towards the main conjecture and related questions. 

Thu, 16 May 2019

16:00 - 17:00
L6

A quantitative bound in the nonlinear Roth theorem

Sean Prendiville
(Manchester)
Abstract

We discuss a nonlinear variant of Roth’s theorem on the existence of three-term progressions in dense sets of integers, focusing on an effective version of such a result. This is joint work with Sarah Peluse.
 

Thu, 09 May 2019

16:00 - 17:00
L6

Prime number models, large gaps, prime tuples and the square-root sieve.

Kevin Ford
(Illinois at Urbana-Champaign)
Abstract


We introduce a new probabilistic model for primes, which we believe is a better predictor for large gaps than the models of Cramer and Granville. We also make strong connections between our model, prime k-tuple counts, large gaps and the "square-root sieve".  In particular, our model makes a prediction about large prime gaps that may contradict the models of Cramer and Granville, depending on the tightness of a certain sieve estimate. This is joint work with Bill Banks and Terence Tao.

Thu, 02 May 2019

16:00 - 17:00
L6

Arithmetic quantum chaos and small scale equidistribution

Peter Humphries
(UCL)
Abstract

Berry's random wave conjecture is a heuristic that the eigenfunctions of a classically ergodic system ought to display Gaussian random behaviour, as though they were random waves, in the large eigenvalue limit. We discuss two manifestations of this conjecture for eigenfunctions of the Laplacian on the modular surface: Planck scale mass equidistribution, and an asymptotic for the fourth moment. We will highlight how the resolution of these two problems in this number-theoretic setting involves a delicate understanding of the behaviour of certain families of L-functions.

Thu, 07 Mar 2019

16:00 - 17:00
L6

Algebraic independence for values of integral curves

Tiago Fonseca
(University of Oxford)
Abstract

After a brief introduction to the theory of transcendental numbers, I will discuss Nesterenko's 1996 celebrated theorem on the algebraic independence of values of Eisenstein series, and some related open problems. This motivates the second part of the talk, in which I will report on a recent geometric generalization of Nesterenko's method.

Thu, 28 Feb 2019

16:00 - 17:00
L6

Arithmetic statistics via graded Lie algebras

Beth Romano
(University of Cambridge)
Abstract

I will talk about recent work with Jack Thorne in which we find the average size of the Selmer group for a family of genus-2 curves by analyzing a graded Lie algebra of type E_8. I will focus on the role representation theory plays in our proofs.

Thu, 21 Feb 2019

16:00 - 17:00
L6

GCD sums and sum-product estimates

Aled Walker
(University of Cambridge)
Abstract


When S is a finite set of natural numbers, a GCD-sum is a particular kind of double-sum over the elements of S, and they arise naturally in several settings. In particular, these sums play a role when one studies the local statistics of point sequences on the unit circle. There are known upper bounds for the size of a GCD-sum in terms of the size of the set S, most recently due to de la Bretèche and Tenenbaum, and these bounds are sharp. Yet the known examples of sets S for which the GCD-sum over S provides a matching lower bound all possess strong multiplicative structure, whereas in applications the set S often comes with additive structure. In this talk I will describe recent joint work with Thomas Bloom in which we apply an estimate from sum-product theory to prove a much stronger upper bound on a GCD-sum over an additively structured set. I will also describe an application of this improvement to the study of the distribution of points on the unit circle, with a further application to arbitrary infinite subsets of squares. 

Thu, 14 Feb 2019

16:00 - 17:00
L6

p-Adic Asai L-functions of Bianchi modular forms

Chris Williams
(Imperial College)
Abstract

The Asai (or twisted tensor) L-function attached to a Bianchi modular form is the 'restriction to the rationals' of the standard L-function. Introduced by Asai in 1977, subsequent study has linked its special values to the arithmetic of the corresponding form. In this talk, I will discuss joint work with David Loeffler in which we construct a p-adic Asai L-function -- that is, a measure on Z_p* that interpolates the critical values L^As(f,chi,1) -- for ordinary weight 2 Bianchi modular forms. We use a new method for constructing p-adic L-functions, using Kato's system of Siegel units to build a 'Betti analogue' of an Euler system, building on algebraicity results of Ghate. I will start by giving a brief introduction to p-adic L-functions and Bianchi modular forms, and if time permits, I will briefly mention another case where the method should apply, that of non-self-dual automorphic representations for GL(3).

Thu, 07 Feb 2019

16:00 - 17:00
L6

Bohr sets and multiplicative diophantine approximation

Sam Chow
(Oxford University)
Abstract

Gallagher's theorem is a strengthening of the Littlewood conjecture that holds for almost all pairs of real numbers. I'll discuss some recent refinements of Gallagher's theorem, one of which is joint work with Niclas Technau. A key new ingredient is the correspondence between Bohr sets and generalised arithmetic progressions. It is hoped that these are the first steps towards a metric theory of multiplicative diophantine approximation on manifolds. 

Thu, 31 Jan 2019

16:00 - 17:00
L6

Is a random polynomial irreducible?

Dimitris Koukoulopoulos
(Université de Montréal)
Abstract

Given a "random" polynomial over the integers, it is expected that, with high probability, it is irreducible and has a big Galois group over the rationals. Such results have been long known when the degree is bounded and the coefficients are chosen uniformly at random from some interval, but the case of bounded coefficients and unbounded degree remained open. Very recently, Emmanuel Breuillard and Peter Varju settled the case of bounded coefficients conditionally on the Riemann Hypothesis for certain Dedekind zeta functions. In this talk, I will present unconditional progress towards this problem, joint with Lior Bary-Soroker and Gady Kozma.

Thu, 24 Jan 2019

16:00 - 17:00
L6

Hida families of Drinfeld modular forms

Giovanni Rosso
(University of Cambridge)
Abstract

Seminal work of Hida tells us that if a modular eigenform is ordinary at p then we can always find other eigenforms, of different weights, that are congruent to our given form. Even better, it says that we can find q-expansions with coefficients in p-adic analytic function of the weight variable k that when evaluated at positive integers give the q-expansion of classical eigenforms. His construction of these families uses mainly the geometry of the modular curve and its ordinary locus.
In a joint work with Marc-Hubert Nicole, we obtained similar results for Drinfeld modular forms over function fields. After an extensive introduction to Drinfeld modules, their moduli spaces, and Drinfeld modular forms, we shall explain how to construct Hida families for ordinary Drinfeld modular forms.

Thu, 17 Jan 2019

16:00 - 17:00
L6

Elliptic analogs of multiple zeta values

Nils Matthes
(Oxford University)
Abstract

Multiple zeta values are generalizations of the special values of Riemann's zeta function at positive integers. They satisfy a large number of algebraic relations some of which were already known to Euler. More recently, the interpretation of multiple zeta values as periods of mixed Tate motives has led to important new results. However, this interpretation seems insufficient to explain the occurrence of several phenomena related to modular forms.

The aim of this talk is to describe an analog of multiple zeta values for complex elliptic curves introduced by Enriquez. We will see that these define holomorphic functions on the upper half-plane which degenerate to multiple zeta values at cusps. If time permits, we will explain how some of the rather mysterious modular phenomena pertaining to multiple zeta values can be interpreted directly via the algebraic structure of their elliptic analogs.

Thu, 29 Nov 2018

16:00 - 17:00
L6

Lang-Vojta conjecture over function fields for surfaces dominating tori

Laura Capuano
(Oxford University)
Abstract

The celebrated Lang-Vojta Conjecture predicts degeneracy of S-integral points on varieties of log general type defined over number fields. It admits a geometric analogue over function fields, where stronger results have been obtained applying a method developed by Corvaja and Zannier. In this talk, we present a recent result for non-isotrivial surfaces over function fields dominating a two-dimensional torus. This extends Corvaja and Zannier’s result in the isotrivial case and it is based on a refinement of gcd estimates for polynomials evaluated at S-units. This is a joint work with A. Turchet.

Thu, 22 Nov 2018

16:00 - 17:00
L6

The eigencurve at Eisenstein weight one points

Alice Pozzi
(UCL)
Abstract

In 1973, Serre observed that the Hecke eigenvalues of Eisenstein series can be p-adically interpolated. In other words, Eisenstein series can be viewed as specializations of a p-adic family parametrized by the weight. The notion of p-adic variations of modular forms was later generalized by Hida to include families of ordinary cuspforms. In 1998, Coleman and Mazur defined the eigencurve, a rigid analytic space classifying much more general p-adic families of Hecke eigenforms parametrized by the weight. The local nature of the eigencurve is well-understood at points corresponding to cuspforms of weight k ≥ 2, while the weight one case is far more intricate.

In this talk, we discuss the geometry of the eigencurve at weight one Eisenstein points. Our approach consists in studying the deformation rings of certain (deceptively simple!) Artin representations. Via this Galois-theoretic method, we obtain the q-expansion of some non-classical overconvergent forms in terms of p-adic logarithms of p-units in certain number field. Finally, we will explain how these calculations suggest a different approach to the Gross-Stark conjecture.

Thu, 15 Nov 2018

16:00 - 17:00
L6

Potential automorphy over CM fields and the Ramanujan conjecture

Ana Caraiani
(Imperial College)
Abstract

I will give an overview of some recent progress on potential automorphy results over CM fields, that is joint work with Allen, Calegari, Gee, Helm, Le Hung, Newton, Scholze, Taylor, and Thorne. I will focus on explaining an application to the generalized Ramanujan-Petersson conjecture. 

Thu, 08 Nov 2018

16:00 - 17:00
L6

Indivisibility and divisibility of class numbers of imaginary quadratic fields

Olivia Beckwith
(Bristol)
Abstract

For any prime p > 3, the strongest lower bounds for the number of imaginary quadratic fields with discriminant down down to -X for which the class group has trivial (non-trivial) p-torsion are due to Kohnen and Ono (Soundararajan). I will discuss recent refinements of these classic results in which we consider the imaginary quadratic fields whose class number is indivisible (divisible) by p such that a given finite set of primes factor in a prescribed way. We prove a lower bound for the number of such fields with discriminant down to -X which is of the same order of magnitude as Kohnen and Ono's (Soundararajan's) results. For the indivisibility case, we rely on a result of Wiles establishing the existence of imaginary quadratic fields with trivial p-torsion in their class groups satisfying almost any given finite set of local conditions, and a result of Zagier which says that the Hurwitz class numbers are the Fourier coefficients of a mock modular form.

Thu, 01 Nov 2018

16:00 - 17:00
L6

Shimura varieties at level Gamma_1(p^{\infty}) and Galois representations

Daniel Gulotta
(Oxford University)
Abstract

Let F be a totally real or CM number field.  Scholze has constructed Galois representations associated with torsion classes in the cohomology of locally symmetric spaces for GL_n(F).  We show that the nilpotent ideal appearing in Scholze's construction can be removed when F splits completely at the relevant prime.  As a key component of the proof, we show that the compactly supported cohomology of certain unitary and symplectic Shimura varieties with level  Gamma_1(p^{\infty}) vanishes above the middle degree. This is joint work with Ana Caraiani, Chi-Yun Hsu, Christian Johansson, Lucia Mocz, Emanuel Reinecke, and Sheng-Chi Shih. 

Thu, 25 Oct 2018

16:00 - 17:00
L6

Correlations of multiplicative functions at almost all scales

Joni Teräväinen
(Oxford University)
Abstract


Understanding how shifts of multiplicative functions correlate with each other is a central question in multiplicative number theory. A well-known conjecture of Elliott predicts that there should be no correlation between shifted multiplicative functions unless the functions involved are ‘pretentious functions’ in a certain precise sense. The Elliott conjecture implies as a special case the famous Chowla conjecture on shifted products of the Möbius function.

In the last few years, there has been a lot of exciting progress on the Chowla and Elliott conjectures, and we give an overview of this. Nearly all of the previously obtained results have concerned correlations that are weighted logarithmically, and it is an interesting question whether one can remove these logarithmic weights. We show that one can indeed remove logarithmic averaging from the known results on the Chowla and Elliott conjectures, provided that one restricts to almost all scales in a suitable sense.

This is joint work with Terry Tao.