Forthcoming events in this series


Wed, 14 May 2014

15:00 - 16:00
L6

Construction of p-adic L-functions for unitary groups

Michael Harris
(Columbia University (New York))
Abstract

This is a report on joint work (still in progress) with Ellen Eischen, Jian-Shu Li,
and Chris Skinner.  I will describe the general structure of our construction of p-adic L-functions
attached to families of ordinary holomorphic modular forms on Shimura varieties attached to
unitary groups.  The complex L-function is studied by means of the doubling method;
its p-adic interpolation applies adelic representation theory to Ellen Eischen's Eisenstein 
measure.

Thu, 01 May 2014

16:00 - 17:00
L5

Effective Ratner Theorem for $ASL(2, R)$ and the gaps of the sequence $\sqrt n$ modulo 1

Ilya Vinogradov
(University of Bristol)
Abstract

Let $G=SL(2,\R)\ltimes R^2$ and $\Gamma=SL(2,Z)\ltimes Z^2$. Building on recent work of Strombergsson we prove a rate of equidistribution for the orbits of a certain 1-dimensional unipotent flow of $\Gamma\G$, which projects to a closed horocycle in the unit tangent bundle to the modular surface. We use this to answer a question of Elkies and McMullen by making effective the convergence of the gap distribution of $\sqrt n$ mod 1.

Thu, 13 Mar 2014

16:00 - 17:00
L5

Arithmetic of abelian varieties over function fields and an application to anabelian geometry.

Mohamed Saidi
(Exeter)
Abstract

We investigate certain (hopefully new) arithmetic aspects of abelian varieties defined over function fields of curves over finitely generated fields. One of the key ingredients in our investigation is a new specialisation theorem a la N\'eron for the first Galois cohomology group with values in the Tate module, which generalises N\'eron specialisation theorem for rational points. Also, among other things, we introduce a discrete version of Selmer groups, which are finitely generated abelian groups. We also discuss an application of our investigation to anabelian geometry (joint work with Akio Tamagawa).

Thu, 06 Mar 2014

16:00 - 17:00
L5

Isogeny classes of abelian varieties and weakly special subvarieties

Martin Orr
(UCL)
Abstract
Let Z be a subvariety of the moduli space of abelian varieties, and suppose that Z contains a dense set of points for which the corresponding abelian varieties are isogenous. A corollary of the Zilber-Pink conjecture predicts that Z is a weakly special subvariety. I shall discuss the proof of this conjecture in the case when Z is a curve and obstacles to its proof for higher dimensions.

For Logic Seminar: Note change of time and place.

Thu, 20 Feb 2014

16:00 - 17:00
L6

From quadratic polynomials and continued fractions to modular forms

Paloma Bengoechea
(York)
Abstract
Zagier studied in 1999 certain real functions defined in a very simple way as sums of powers of quadratic polynomials with integer coefficients. These functions give the even parts of the period polynomials of the modular forms which are the coefficients in Fourier expansion of the kernel function for Shimura-Shintani correspondence. He conjectured for these sums a representation in terms of a finite set of polynomials coming from reduction of binary quadratic forms and the infinite set of transformations occuring in a continued fraction algorithm of the real variable. We will prove two different such representations, which imply the exponential convergence of the sums.

For Logic Seminar: Note change of time and location!

Thu, 13 Feb 2014

16:00 - 17:00
L5

Covering systems of congruences

Bob Hough
(Oxford University)
Abstract

A distinct covering system of congruences is a collection

\[

(a_i \bmod m_i), \qquad 1\ \textless\ m_1\ \textless\ m_2\ \textless\ \ldots\ \textless\ m_k

\]

whose union is the integers. Erd\"os asked whether there are covering systems for which $m_1$ is arbitrarily large. I will describe my negative answer to this problem, which involves the Lov\'{a}sz Local Lemma and the theory of smooth numbers.

Thu, 06 Feb 2014

16:30 - 17:30
L5

Hartmanis-Stearns conjecture and Mahler's method

Evgeniy Zorin
(York)
Abstract
Hartmanis-Stearns conjecture states that any number that can be computed in a real time by a multitape Turing machine is either rational or transcendental, but never irrational algebraic. I will discuss approaches of the modern transcendence theory to this question as well as some results in this direction.

Note: Change of time and (for Logic) place! Joint with Number Theory (double header)

Thu, 06 Feb 2014

15:00 - 16:00
L5

An Euler system of diagonal cycles and the Birch and Swinnerton-Dyer conjecture for non-abelian twists of elliptic curves.

Victor Rotger
(Universitat Politècnica de Catalunya · BarcelonaTech)
Abstract

The goal of this lecture is describing recent joint work with Henri Darmon, in which we construct an Euler system of twisted Gross-Kudla diagonal cycles that allows us to prove, among other results, the following statement (under a mild non-vanishing hypothesis that we shall make explicit):

Let $E/\mathbb{Q}$ be an elliptic curve and $K=\mathbb{Q}(\sqrt{D})$ be a real quadratic field. Let $\psi: \mathrm{Gal}(H/K) \rightarrow \mathbb{C}^\times$ be an anticyclotomic character. If $L(E/K,\psi,1)\ne 0$ then the $\psi$-isotypic component of the Mordell-Weil group $E(H)$ is trivial.

Such a result was known to be a consequence of the conjectures on Stark-Heegner points that Darmon formulated at the turn of the century. While these conjectures still remain highly open, our proof is unconditional and makes no use of this theory.

Thu, 30 Jan 2014

16:00 - 17:00
L5

Modular forms, Eisenstein series and the ternary divisor function

Emmanuel Kowalski
(ETH Zuerich)
Abstract

After a short survey of the notion of level of distribution for
arithmetic functions, and its importance in analytic number theory, we
will explain how our recent studies of twists of Fourier coefficients of
modular forms (and especially Eisenstein series) by "trace functions"
lead to an improvement of the results of Friedlander-Iwaniec and
Heath-Brown for the ternary divisor function in arithmetic progressions
to prime moduli.

This is joint work with É. Fouvry and Ph. Michel.

Thu, 23 Jan 2014

16:00 - 17:00
L5

Elliptic Curves over Real Quadratic Fields are Modular.

Samir Siksek
(University of Warwick)
Abstract

We combine recent breakthroughs in modularity lifting with a
3-5-7 modularity switching argument to deduce modularity of elliptic curves over real
quadratic fields. We
discuss the implications for the Fermat equation. In particular we
show that if d is congruent
to 3 modulo 8, or congruent to 6 or 10 modulo 16, and $K=Q(\sqrt{d})$
then there is an
effectively computable constant B depending on K, such that if p>B is prime,
and $a^p+b^p+c^p=0$ with a,b,c in K, then abc=0.   This is based on joint work with Nuno Freitas (Bayreuth) and Bao Le Hung (Harvard).

Fri, 06 Dec 2013
16:00
L1

Special numbers and special functions related to Ramanujan's mock modular forms

Ken Ono
(Emory University)
Abstract

 This lecture will cover two recent works on the mock modular
forms of Ramanujan.

I. Solution of Ramanujan's original conjectures about these functions.
(Joint work with Folsom and Rhoades)

II. A new theorem that mock modular forms are "generating functions" for
central L-values and derivatives of quadratic twist L-functions.
(Joint work with Alfes, Griffin, Rolen).

Thu, 13 Jun 2013

16:00 - 17:00
L3

Manin's conjecture for certain smooth hypersurfaces in biprojective space

Damaris Schindler
(Bristol University)
Abstract

So far, the circle method has been a very useful tool to prove
many cases of Manin's conjecture. Work of B. Birch back in 1961 establishes
this for smooth complete intersections in projective space as soon as the
number of variables is large enough depending on the degree and number of
equations. In this talk we are interested in subvarieties of biprojective
space. There is not much known so far, unless the underlying polynomials are
of bidegree (1,1). In this talk we present recent work which combines the
circle method with the generalised hyperbola method developed by V. Blomer
and J. Bruedern. This allows us to verify Manin's conjecture for certain
smooth hypersurfaces in biprojective space of general bidegree.

Thu, 30 May 2013

16:00 - 17:00
L3

On translation invariant quadratic forms

Eugen Keil
(Bristol)
Abstract

Solutions to translation invariant linear forms in dense sets  (for example: k-term arithmetic progressions), have been studied extensively in additive combinatorics and number theory. Finding solutions to translation invariant quadratic forms is a natural generalization and at the same time a simple instance of the hard general problem of solving diophantine equations in unstructured sets. In this talk I will explain how to modify the  classical circle method approach to obtain quantitative results  for quadratic forms with at least 17 variables.

Thu, 23 May 2013

16:00 - 17:00
L3

Some structure of character sums

Jonathan Bober
(Bristol)
Abstract

I'll discuss questions about the structure of long sums of

Dirichlet characters --- that is, sums of length comparable to the modulus.

For example: How often do character sums get large? Where do character sums

get large? What do character sums "look like" when then get large? This will

include some combination of theorems and experimental data.

Thu, 16 May 2013

16:00 - 17:00
L3

Refining the Iwasawa main conjecture

Romyar Sharifi
(Arizona)
Abstract

I will discuss conjectures relating cup products of cyclotomic units and modular symbols modulo an Eisenstein ideal. In particular, I wish to explain how these conjectures may be viewed as providing a refinement of the Iwasawa main conjecture. T. Fukaya and K. Kato have proven these conjectures under certain hypotheses, and I will mention a few key ingredients. I hope to briefly mention joint work with Fukaya and Kato on variants.

Thu, 09 May 2013

16:00 - 17:00
L3

Arithmetic restriction theory and Waring's problem

Kevin Hughes
(Edinburgh)
Abstract

We will discuss arithmetic restriction phenomena and its relation to Waring's problem, focusing on how recent work of Wooley implies certain restriction bounds.