Forthcoming events in this series


Mon, 23 May 2016

14:15 - 15:15
C6

Einstein relation and steady states for the random conductance model

NINA GANTERT
(T U Munich Germany)
Abstract

We consider the random conductance model: random walk among iid, uniformly elliptic conductnace on the d-dimensional lattice. We state,and explain, the Einstein relation for this model:It says that the derivative of the velocity of a biased walk as a function of the bias equals the diffusivity in equilibrium. For fixed bias, we show that there is an invariant measure for the environment seen from the particle.These invariant measures are often called steady states.

The Einstein relation follows, at least for dimensions three and larger, from an expansion of the steady states as a function of the bias.

The talk is gase on joint work with Jan Nagel and Xiaoqin Guo

 

Mon, 16 May 2016

14:15 - 15:15
C6

Heat equation driven by a space-time fractional noise

AURELIEN DEYA
(university of Lorraine France)
Abstract

The extension of standard stochastic models (SDEs, SPDEs) to general fractional noises is known to be a tricky issue, which cannot be studied within the classical martingale setting. We will see how the recently-introduced theory of regularity structures allows us to overcome these difficulties, in the case of a heat equation model with non-linear perturbation driven by a space-time fractional Brownian motion.

The analysis relies in particular on the exhibition of an explicit process at the core of the dynamics, the so-called K-rough path, the definition of which shows strong similarities with that of a classical rough path.

Mon, 09 May 2016

15:45 - 16:45
C6

Global quantizations with and without symmetries

MICHAEL RUZHANSKY
(Imperial College London)
Abstract

In this talk we will give an overview of the recent research on global quantizations on spaces of different types: compact and nilpotent Lie groups, general locally compact groups, compact manifolds with boundary.

Mon, 09 May 2016

14:15 - 15:15
C6

Gaussian Heat-kernel for the RCM with unbounded conductances

OMAR BOUKHADRA
(University of Constantine 1)
Abstract

The talk will focus on continuous time random walk with unbounded i.i.d. random conductances on the grid $\mathbb{Z}^d$  In the first place, in a joint work with Kumagai and Mathieu, we obtain Gaussian heat kernel bounds and also local CLT for bounded from above and not bounded from below conductances. The proof is given at first in a general framework, then it is specified in the case of plynomial lower tail conductances. It is essentially based on percolation and spectral analysis arguments, and Harnack inequalities. Then we will discuss the same questions for the same model with i.i.d. random conductances, bounded from below and with finite expectation.

Mon, 07 Mar 2016

15:45 - 16:45
C4

Superhedging Approach to Robust Finance and Local Times

David Proemel
((ETH) Zurich)
Abstract

Using Vovk's game-theoretic approach to mathematical finance and probability, it is possible to obtain new results in both areas.We first prove that one can make an arbitrarily large profit by investing in those one-dimensional paths which do not possess a local time of finite p-variation.  Additionally, we provide pathwise Tanaka formulas suitable for our local times and for absolutely continuous functions with sufficient regular derivatives. In the second part we derive a model-independent super-replication theorem in continuous time. Our result covers a broad range of exotic derivatives, including look-back options, discretely monitored Asian options, and options on realized variance.
 This talk is based on joint works with M. Beiglböck, A.M.G. Cox, M. Huesmann and N. Perkowski.


 

Mon, 07 Mar 2016

14:15 - 15:15
C4

Singular SPDEs on manifolds

Joscha Diehl
(TU Berlin)
Abstract

 

We show how the theories of paracontrolled distributions and regularity structures can be implemented on manifolds, to solve singular SPDEs like the parabolic Anderson model.

This is ongoing work with Bruce Driver (UCSD) and Antoine Dahlqvist (Cambridge)

 

 

Mon, 29 Feb 2016

15:45 - 16:45
C4

Malliavin Calculus for Regularity Structures: the case of gPAM

Guiseppe Cannizzaro
(TU Berlin)
Abstract

Malliavin calculus is implemented in the context of [M. Hairer, A theory of regularity structures, Invent. Math. 2014]. This involves some constructions of independent interest, notably an extension of the structure which accommodates a robust and purely deterministic translation operator in L^2-directions between models. In the concrete context of the generalized parabolic Anderson model in 2D -one of the singular SPDEs discussed in the afore-mentioned article - we establish existence of a density at positive times.

Mon, 29 Feb 2016

14:15 - 15:15
C4

Rough Gronwall Lemma and weak solutions to RPDEs

Martina Hofmanova
(TU Berlin)
Abstract

In this talk, I will present recent results that give the necessary mathematical foundation for the study of rough path driven PDEs in the framework of weak solutions. The main tool is a new rough Gronwall Lemma argument whose application is rather wide: among others, it allows to derive the basic energy estimates leading to the proof of existence for e.g. parabolic RPDEs. The talk is based on a joint work with Aurelien Deya, Massimiliano Gubinelli and Samy Tindel.

Mon, 22 Feb 2016

15:45 - 16:45
L5

Renormalisation in Regularity Structures

Lorenzo Zambotti
(Universite of Paris 6)
Abstract

In this talk we want to present a detailed study of the algebraic objects appearing in the theory of regularity structures. In particular we aim at introducing a class of co-algebras on labelled forests and trees and show that these allow to describe in an unified setting the structure group and the renormalisation group. Based on joint work with Yvain Bruned and Martin Hairer

          

Mon, 22 Feb 2016

14:15 - 15:15
L5

Rough differential equations and random dynamical systems

Sebastian Riedel
(TU Berlin University)
Abstract

We aim to study the long time behaviour of the solution to a rough differential equation (in the sense of Lyons) driven by a random rough path. To do so, we use the theory of random dynamical systems. In a first step, we show that rough differential equations naturally induce random dynamical systems, provided the driving rough path has stationary increments. If the equation satisfies a strong form of stability, we can show that the solution admits an invariant measure.

This is joint work with I. Bailleul (Rennes) and M. Scheutzow (Berlin).    

Mon, 15 Feb 2016

15:45 - 16:45
L5

A Stratonovich-Skorohod integral formula for Gaussian rough paths.

Nengli Lim
(Imperial College London)
Abstract

We derive a Stratonovich-to-Skorohod integral conversion formula for a class of integrands which are path-level solutions to RDEs driven by Gaussian rough paths. This is done firstly by showing that this class lies in the domain of the Skorohod integral, and secondly, by appending the Riemann-sum approximants of the Skorohod integral with a suitable compensation term. To show the convergence of the Riemann-sum approximants, we utilize a novel characterization of the Cameron-Martin norm using higher dimensional Young-Stieltjes integrals. Moreover, in the case where complementary regularity is absent, i.e. when the integrand has finite p-variation and the integrator has finite q-variation but 1/p + 1/q <= 1, we give new and sufficient conditions for the convergence these Young integrals.

Mon, 15 Feb 2016

14:15 - 15:00
L5

'From differentially subordinate martingales under a change of law to optimal weighted estimates in harmonic analysis'

Stefanie Petermichl
(Toulouse)
Abstract

The Hilbert transform is a central operator in harmonic analysis as it gives access to the harmonic conjugate function. The link between pairs of martingales (X,Y) under differential subordination and the pair (f,Hf) of a function and its Hilbert transform have been known at least since the work of Burkholder and Bourgain in the UMD setting.

During the last 20 years, new and more exact probabilistic interpretations of operators such as the Hilbert transform have been studied extensively. The motivation for this was in part the study of optimal weighted estimates in harmonic analysis. It has been known since the 70s that H:L^2(w dx) to L^2(w dx) if and only if w is a Muckenhoupt weight with its finite Muckenhoupt characteristic. By a sharp estimate we mean the correct growth of the weighted norm in terms of this characteristic. In one particular case, such an estimate solved a long standing borderline regularity problem in complex PDE.

In this lecture, we present the historic development of the probabilistic interpretation in this area, as well as recent results and open questions.

Mon, 01 Feb 2016

15:45 - 16:45
L5

Kolmogorov equations in infinite dimensions

Adam Anderson
(TU Berlin University)
Abstract

Abstract: Kolmogorov backward equations related to stochastic evolution equations (SEE) in Hilbert space, driven by trace class Gaussian noise have been intensively studied in the literature. In this talk I discuss the extension to non trace class Gaussian noise in the particular case when the leading linear operator generates an analytic semigroup. This natural generalization leads to several complications, requiring new existence and uniqueness results for SEE with initial singularities and a new notion of an extended transition semigroup. This is joint work with Arnulf Jentzen and Ryan Kurniawan (ETH).

 

Mon, 01 Feb 2016

14:15 - 15:15
L5

Hölder regularity for a non-linear parabolic equation driven by space-time white noise

Hendrik Weber
(University of Warwick)
Abstract

We consider the non-linear equation $T^{-1} u+\partial_tu-\partial_x^2\pi(u)=\xi$

driven by space-time white noise $\xi$, which is uniformly parabolic because we assume that $\pi'$ is bounded away from zero and infinity. Under the further assumption of Lipschitz continuity of $\pi'$ we show that the stationary solution is - as for the linear case - almost surely Hölder continuous with exponent $\alpha$ for any $\alpha<\frac{1}{2}$ w. r. t. the parabolic metric. More precisely, we show that the corresponding local Hölder norm has stretched exponential moments.

On the stochastic side, we use a combination of martingale arguments to get second moment estimates with concentration of measure arguments to upgrade to Gaussian moments. On the deterministic side, we first perform a Campanato iteration based on the De Giorgi-Nash Theorem as well as finite and infinitesimal versions of the $H^{-1}$-contraction principle, which yields Gaussian moments for a weaker Hölder norm. In a second step this estimate is improved to the optimal

Hölder exponent at the expense of weakening the integrability to stretched exponential.

 

This is joint work with Felix Otto.

 

Mon, 25 Jan 2016

15:45 - 16:45
L5

Higher order theory for renewal sequences with infinite mean.

Dalia Terhesiu
(Exeter University)
Abstract


First order asymptotic of scalar renewal sequences with infinite mean characterized by regular variation has been classified in the 60's (Garsia and Lamperti). In the recent years, the question of higher order asymptotic for renewal sequences with infinite mean was motivated by obtaining 'mixing rates' for dynamical systems with infinite measure. In this talk I will present the recent results we have obtained on higher order expansion for renewal sequences with infinite mean (not necessarily generated by independent processes) in the regime of slow regular variation (with small exponents).  I will also discuss some consequences of these results for error rates in certain limit theorems (such as arcsine law for null recurrent Markov processes).

 

Mon, 25 Jan 2016

14:15 - 15:45
L5

Propagation in a non-local reaction-diffusion equation

Christopher Henderson
(ENS Lyon)
Abstract

The first reaction-diffusion equation developed and studied is the Fisher-KPP equation.  Introduced in 1937, it accounts for the spatial spreading and growth of a species.  Understanding this population-dynamics model is equivalent to understanding the distribution of the maximum particle in a branching Brownian motion.  Various generalizations of this model have been studied in the eighty years since its introduction, including a model with non-local reaction for the cane toads of Australia introduced by Benichou et. al.  I will begin the talk by giving an extended introduction on the Fisher-KPP equation and the typical behavior of its solutions.  Afterwards, I will describe the model for the cane toads equations and give new results regarding this model.  In particular, I will show how the model may be viewed as a perturbation of a local equation using a new Harnack-type inequality and I will discuss the super-linear in time propagation of the toads.  The talk is based on a joint work with Bouin and Ryzhik.

 

---
 

Mon, 18 Jan 2016

15:45 - 16:45
L5

"On the splitting phenomenon in the Sathe-Selberg theorem: universality of the Gamma factor

Yacine Barhoumi
(University of Warwick)
Abstract

We consider several classes of sequences of random variables whose Laplace transform presents the same type of \textit{splitting phenomenon} when suitably rescaled. Answering a question of Kowalski-Nikeghbali, we explain the apparition of a universal term, the \textit{Gamma factor}, by a common feature of each model, the existence of an auxiliary randomisation that reveals an independence structure.
The class of examples that belong to this framework includes random uniform permutations, random polynomials or random matrices with values in a finite field and the classical Sathe-Selberg theorems in probabilistic number theory. We moreover speculate on potential similarities in the Gaussian setting of the celebrated Keating and Snaith's moments conjecture. (Joint work with R. Chhaibi)
 

Mon, 18 Jan 2016

14:15 - 15:15
L5

Stein methods for Brownian motion

Laure Coutin
(Université de Toulouse)
Abstract

Motivated by a theorem of Barbour, we revisit some of the classical limit theorems in probability from the viewpoint of the Stein method. We setup the framework to bound Wasserstein distances between some distributions on infinite dimensional spaces. We show that the convergence rate for
the Poisson approximation of the Brownian motion is as expected proportional to λ −1/2 where λ is the intensity of the Poisson process. We also exhibit the speed of convergence for the Donsker Theorem and extend this result to enhanced Brownian motion.

 

Mon, 30 Nov 2015

15:45 - 16:45
Oxford-Man Institute

TBC

KHALIL CHOUK
(Bonn University)
Abstract

TBC

Mon, 30 Nov 2015

15:00 - 16:00
Oxford-Man Institute

Higher order theory for renewal sequences with infinite mean.

DALIA TERHESIU
(University of Exeter)
Abstract

Abstract: First order asymptotic of scalar renewal sequences with infinite mean characterized by regular variation has been classified in the 60's (Garsia and Lamperti). In the recent years, the question of higher order asymptotic for renewal sequences with infinite mean was motivated by obtaining 'mixing rates' for dynamical systems with infinite measure. In this talk I will present the recent results we have obtained on higher order asymptotic for renewal sequences with infinite mean and their consequences for error rates in certain limit theorems (such as arcsine law for null recurrent Markov processes).

Mon, 23 Nov 2015

15:45 - 16:45
Oxford-Man Institute

Rough paths on manifolds revisited

CHRISTIAN LITTERER
(University of York)
Abstract


Abstract: We consider different notions of rough paths on manifolds and study some of the relations between these definitions. Furthermore, we explore extensions to manifolds modelled along infinite dimensional Banach spaces.

Mon, 23 Nov 2015

14:15 - 15:15
Oxford-Man Institute

Random walks and Lévy processes as rough paths

ILYA CHEVYREV
(University of Oxford)
Abstract

Abstract: We consider random walks and Lévy processes in the free nilpotent Lie group as rough paths. For any p > 1, we completely characterise (almost) all Lévy processes whose sample paths have finite p-variation, provide a Lévy-Khintchine formula for the characteristic function of the signature of a Lévy process treated as a rough path, and give sufficient conditions under which a sequence of random walks converges weakly to a Lévy process in rough path topologies. At the heart of our analysis is a criterion for tightness of p-variation for a collection of càdlàg strong Markov processes. We demonstrate applications of our results to weak convergence of stochastic flows.

Mon, 09 Nov 2015

15:45 - 16:45
Oxford-Man Institute

: Gradient estimates for Brownian bridges to submanifolds

JAMES THOMPSON
(University of Warwick)
Abstract

Abstract: A diffusion process on a Riemannian manifold whose generator is one half of the Laplacian is called a Brownian motion. The mean local time of Brownian motion on a hypersurface will be considered, as will the situation in which a Brownian motion is conditioned to arrive in a fixed submanifold at a fixed positive time. Doing so provides motivation for the remainder of the talk, in which a probabilistic formula for the integral of the heat kernel over a submanifold is proved and used to deduce lower bounds, an asymptotic relation and derivative estimates applicable to the conditioned process.

 

Mon, 09 Nov 2015

14:15 - 15:15
Oxford-Man Institute

Tightness and duality of martingale transport on the Skorokhod space

TAN XIAOLU
(University of Paris Dauphine)
Abstract

Abstract: The martingale optimal transport aims to optimally transfer a probability measure to another along the class of martingales. This problem is mainly motivated by the robust superhedging of exotic derivatives in financial mathematics, which turns out to be the corresponding Kantorovich dual. In this paper we consider the continuous-time martingale transport on the Skorokhod space of cadlag paths. Similar to the classical setting of optimal transport, we introduce different dual problems and establish the corresponding dualities by a crucial use of the S-topology and the dynamic programming principle. This is a joint work with Gaoyue Guo and Nizar Touzi.

Mon, 02 Nov 2015

15:45 - 16:45
Oxford-Man Institute

: Pfaffians, 1-d particle systems and random matrices.

ROGER TRIBE
(University of Warwick)
Abstract

Abstract: Joint work with Oleg Zaboronsky (Warwick).

Some one dimensional nearest neighbour particle systems are examples of Pfaffian point processes - where all intensities are determined by a single kernel.In some cases these kernels have appeared in the random matrix literature (where the points are the positions of eigenvalues). We are attempting to use random matrix tools on the particle sytems, and particle tools on the random matrices.