Forthcoming events in this series


Mon, 22 Oct 2018

15:45 - 16:45
L3

Excursion sets of Gaussian fields and percolation

MICHAEL McAULEY
(University of Oxford)
Abstract

The physics literature has for a long time posited a connection between the geometry of continuous random fields and discrete percolation models. Specifically the excursion sets of continuous fields are considered to be analogous to the open connected clusters of discrete models. Recent work has begun to formalise this relationship; many of the classic results of percolation (phase transition, RSW estimates etc) have been proven in the setting of smooth Gaussian fields. In the first part of this talk I will summarise these results. In the second I will focus on the number of excursion set components of Gaussian fields in large domains and discuss new results on the mean and variance of this quantity.

 

Mon, 22 Oct 2018

14:15 - 15:15
L3

Bismut Formula for Lions Derivative of Distribution Dependent SDEs and Applications

PANPAN REN
(Swansea University)
Abstract

By using Malliavin calculus, Bismut type formulas are established for the Lions derivative of , where  0,  is a bounded measurable function,  and  solves a distribution dependent SDE with initial distribution . As applications, explicit estimates are derived for the Lions derivative and the total variational distance between distributions of   solutions with different initial data. Both degenerate and non-degenerate situations are considered. Due to the lack of the semi-group property  and the invalidity of the formula =  , essential difficulties are overcome in the study.

Joint work with Professor Feng-Yu Wang

Mon, 15 Oct 2018

15:45 - 16:45
L3

Deep calibration of the rough Bergomi model

BENJAMIN STEMPER
(WIAS Berlin)
Abstract

Unlike standard bivariate diffusion models, the rough Bergomi model by Bayer, Friz, and Gatheral (2016) allows to parsimoniously recover key stylized facts of market implied volatility surfaces such as the exploding power-law behaviour of the at-the-money volatility skew as time to maturity goes to zero. However, falling into the class of so-called rough stochastic volatility models sparked by Alo`s, Leo ́n, and Vives (2007); Fukasawa (2011, 2017); Gatheral, Jaisson, and Rosenbaum (2018), its non-Markovianity poses serious mathematical and computational challenges. To date, calibrating rough Bergomi remained prohibitively expensive since standard calibration routines rely on the repetitive evaluation of the map from model parameters to Black-Scholes implied volatility, which in the case of rough Bergomi involves a costly Monte Carlo simulation (Bennedsen, Lunde, & Pakkanen, 2017; McCrickerd & Pakkanen, 2018; Bayer et al., 2016; Horvath, Jacquier, & Muguruza, 2017). In this paper, we resolve the issue by combining a standard Levenberg-Marquardt calibration routine with a neural network regression, replacing expensive MC simulations with cheap forward runs of a network trained to approximate the implied volatility map. Some numerical results show the prowess of this approach.

Mon, 08 Oct 2018

15:45 - 16:45
L3

Fine properties of fractional Brownian motions on Wiener space

JIAWEI LI
(University of Oxford)
Abstract

We study several important fine properties for the family of fractional Brownian motions with Hurst parameter H under the (p,r)-capacity on classical Wiener space introduced by Malliavin. We regard fractional Brownian motions as Wiener functionals via the integral representation discovered by Decreusefond and \"{U}st\"{u}nel, and show non differentiability, modulus of continuity, law of iterated Logarithm(LIL) and self-avoiding properties of fractional Brownian motion sample paths using Malliavin calculus as well as the tools developed in the previous work by Fukushima, Takeda and etc. for Brownian motion case.

 

Mon, 08 Oct 2018

14:15 - 15:15
L3

On smile properties of volatility derivatives and exotic products: understanding the VIX skew

ELISA ALOS ALCALDE
(Universitat Pompeu Fabra)
Abstract

We develop a method to study the implied volatility for exotic options and volatility derivatives with European payoffs such as VIX options. Our approach, based on Malliavin calculus techniques, allows us to describe the properties of the at-the-money implied volatility (ATMI) in terms of the Malliavin derivatives of the underlying process. More precisely, we study the short-time behaviour of the ATMI level and skew. As an application, we describe the short-term behavior of the ATMI of VIX and realized variance options in terms of the Hurst parameter of the model, and most importantly we describe the class of volatility processes that generate a positive skew for the VIX implied volatility. In addition, we find that our ATMI asymptotic formulae perform very well even for large maturities. Several numerical examples are provided to support our theoretical results.  

Mon, 11 Jun 2018

15:45 - 16:45
L3

An order/disorder perturbation of percolation model. A highroad to Cardy's formula.

MIKHAIL KHRISTOFOROV
(University of Geneve)
Abstract

We will discuss the percolation model on the hexagonal grid. In 2001 S. Smirnov proved conformal invariance of its scaling limit through the use of a tricky auxiliary combinatorial construction.

We present a more conceptual approach, implying that the construction in question can be thought of as geometrically natural one.

The main goal of the talk is to make it believable that not all nice and useful objects in the field have been already found.

No background is required.

Mon, 11 Jun 2018

14:15 - 15:15
L3

Gradient estimates and applications to nonlinear filtering

CHRISTIAN LITTERER
(University of York)
Abstract

We present sharp gradient estimates for the solution of the filtering equation and report on its applications in a high order cubature method for the nonlinear filtering problem.

Mon, 04 Jun 2018

15:45 - 16:45
L3

Genetic isolation by distance in a random environment

RAPHAEL FORIEN
(Ecole Polytechnique (ParisTech))
Abstract

I will present a mathematical model for the genetic evolution of a population which is divided in discrete colonies along a linear habitat, and for which the population size of each colony is random and constant in time. I will show that, under reasonable assumptions on the distribution of the population sizes, over large spatial and temporal scales, this population can be described by the solution to a stochastic partial differential equation with constant coefficients. These coefficients describe the effective diffusion rate of genes within the population and its effective population density, which are both different from the mean population density and the mean diffusion rate of genes at the microscopic scale. To do this, I will present a duality technique and a new convergence result for coalescing random walks in a random environment.

 

Mon, 04 Jun 2018

14:15 - 15:15
L3

Laws of large numbers for a set of probability measures

ZENGJING CHEN
(Shandong University)
Abstract

In this paper, we investigate the limit properties of frequency of empirical averages when random variables are described by a set of probability measures and obtain a law of large numbers for upper-lower probabilities. Our result is an extension of the classical Kinchin's law of large numbers, but the proof is totally different.

keywords: Law of large numbers,capacity, non-additive probability, sub-linear expectation, indepence

paper by: Zengjing Chen School of Mathematics, Shandong University and Qingyang Liu Center for Economic Research, Shandong University

Mon, 21 May 2018

15:45 - 16:45
L3

Invariants of the signature

JOSCHA DIEHL
(Max Planck Institute Leipzig)
Abstract

Based on classical invariant theory, I describe a complete set of elements of the signature that is invariant to the general linear group, rotations or permutations.

A geometric interpretation of some of these invariants will be given.

Joint work with Jeremy Reizenstein (Warwick).

Mon, 21 May 2018

14:15 - 15:15
L3

Algebraic flow

DANYU YANG
(Norwegian University of Science and Technology)
Abstract

We present an algebraic formulation for the flow of a differential equation driven by a path in a Lie group. The formulation is motivated by formal differential equations considered by Chen.

Mon, 14 May 2018

15:45 - 16:45
L3

Unbounded Rough Drivers, Sobolev Spaces and Moser Iteration

ANTOINE HOCQUET
(Technische Universitat Berlin)
Abstract

Recently, Deya, Gubinelli, Hofmanova and Tindel ('16) (also Bailleul-Gubinelli '15) have provided a general approach in order to obtain a priori estimates for rough partial differential equations of the form
(*)    du = Au dt + Bu dX
where X is a two-step rough path, A is a second order operator (elliptic), while B is first order. We will pursue the line of this work by presenting an L^p theory "à la Krylov" for generalized versions of (*). We will give an application of this theory by proving boundedness of solutions for a certain class

Mon, 14 May 2018

14:15 - 15:15
L3

Statistical Arbitrage in Black-Scholes Theory

WEIAN ZHENG
(UCI China)
Abstract

The celebrated Black-Scholes theory shows that one can get a risk-neutral option price through hedging. The Cameron-Martin-Girsanov theorem for diffusion processes plays a key role in this theory. We show that one can get some statistical arbitrage from a sequence of well-designed repeated trading at their prices according to the ergodic theorem for stationary process. Our result is based on both theoretical model and the real market data. 

 

Mon, 30 Apr 2018

15:45 - 16:45
L3

Ricci Flow, Stochastic Analysis, and Functional Inequalities on Manifolds with Time-Dependent Riemannian Metrics

ELTON HSU
(Northwestern University, USA)
Abstract

Stochastic analysis on a Riemannian manifold is a well developed area of research in probability theory.

We will discuss some recent developments on stochastic analysis on a manifold whose Riemannian metric evolves with time, a typical case of which is the Ricci flow. Familiar results such as stochastic parallel transport, integration by parts formula, martingale representation theorem, and functional inequalities have interesting extensions from

time independent metrics to time dependent ones. In particular, we will discuss an extension of Beckner’s inequality on the path space over a Riemannian manifold with time-dependent metrics. The classical version of this inequality includes the Poincare inequality and the logarithmic Sobolev inequality as special cases.

 

Mon, 30 Apr 2018

14:15 - 15:15
L3

Varieties of Signature Tensors

CARLOS AMENDOLA
(TUM Germany)
Abstract

The signature of a parametric curve is a sequence of tensors whose entries are iterated integrals, and they are central to the theory of rough paths in stochastic analysis.  For some special families of curves, such as polynomial paths and piecewise-linear paths, their parametrized signature tensors trace out algebraic varieties in the space of all tensors. We introduce these varieties and examine their fundamental properties, while highlighting their intimate connection to the problem of recovering a path from its signature. This is joint work with Peter Friz and Bernd Sturmfels. 

Mon, 23 Apr 2018

15:45 - 16:45
L3

Rough mean field equations

FRANCOIS DELARUE
(University of Nice Sophia-Antipolis)
Abstract

 We provide in this work a robust solution theory for random rough differential equations of mean field type

$$

dX_t = V\big( X_t,{\mathcal L}(X_t)\big)dt + \textrm{F}\bigl( X_t,{\mathcal L}(X_t)\bigr) dW_t,

$$

where $W$ is a random rough path and ${\mathcal L}(X_t)$ stands for the law of $X_t$, with mean field interaction in both the drift and diffusivity. Propagation of chaos results for large systems of interacting rough differential equations are obtained as a consequence, with explicit convergence rate. The development of these results requires the introduction of a new rough path-like setting and an associated notion of controlled path. We use crucially Lions' approach to differential calculus on Wasserstein space along the way. This is a joint work with I. Bailleul and R. Catellier.

Joint work with I. Bailleul (Rennes) and R. Catellier (Nice)

Mon, 23 Apr 2018

14:15 - 15:15
L3

Numerically Modelling Stochastic Lie Transport in Fluid Dynamics

WEI PAN
(Imperial College London)
Abstract


Abstract:
We present a numerical investigation of stochastic transport for the damped and driven incompressible 2D Euler fluid flows. According to Holm (Proc Roy Soc, 2015) and Cotter et al. (2017), the principles of transformation theory and multi-time homogenisation, respectively, imply a physically meaningful, data-driven approach for decomposing the fluid transport velocity into its drift and stochastic parts, for a certain class of fluid flows. We develop a new methodology to implement this velocity decomposition and then numerically integrate the resulting stochastic partial differential equation using a finite element discretisation. We show our numerical method is consistent.
Numerically, we perform the following analyses on this velocity decomposition. We first perform uncertainty quantification tests on the Lagrangian trajectories by comparing an ensemble of realisations of Lagrangian trajectories driven by the stochastic differential equation, and the Lagrangian trajectory driven by the ordinary differential equation. We then perform uncertainty quantification tests on the resulting stochastic partial differential equation by comparing the coarse-grid realisations of solutions of the stochastic partial differential equation with the ``true solutions'' of the deterministic fluid partial differential equation, computed on a refined grid. In these experiments, we also investigate the effect of varying the ensemble size and the number of prescribed stochastic terms. Further experiments are done to show the uncertainty quantification results "converge" to the truth, as the spatial resolution of the coarse grid is refined, implying our methodology is consistent. The uncertainty quantification tests are supplemented by analysing the L2 distance between the SPDE solution ensemble and the PDE solution. Statistical tests are also done on the distribution of the solutions of the stochastic partial differential equation. The numerical results confirm the suitability of the new methodology for decomposing the fluid transport velocity into its drift and stochastic parts, in the case of damped and driven incompressible 2D Euler fluid flows. This is the first step of a larger data assimilation project which we are embarking on. This is joint work with Colin Cotter, Dan Crisan, Darryl Holm and Igor Shevchenko.
 

Mon, 05 Mar 2018

15:45 - 16:45
L3

McKean-Vlasov SDEs with irregular drift: large deviations for particle approximation

MARIO MAURELLI
(WIAS Berlin)
Abstract

McKean-Vlasov SDEs are SDEs where  the coefficients depend on the law of the solution to the SDE. Their interest is in the links with nonlinear PDEs on one side (the SDE-related Fokker-Planck equation is nonlinear) and with interacting particles on the other side: the McKean-Vlasov SDE be approximated by a system of weakly coupled SDEs. In this talk we consider McKean-Vlasov SDEs with irregular drift: though well-posedness for this SDE is not known, we show a large deviation principle for the corresponding interacting particle system. This implies, in particular, that any limit point of the particle system solves the McKean-Vlasov SDE. The proof combines rough paths techniques and an extended Vanrdhan lemma.

This is a joint work with Thomas Holding.

Mon, 05 Mar 2018

14:15 - 15:15
L3

Epsilon-strong simulation of Levy-driven stochastic differential equations

JING DONG
(Columbia University (New York))
Abstract

 Consider dY(t)=f(X(t))dX(t), where X(t) is a pure jump Levy process with finite p-variation norm, 1<= p < 2, and f is a Lipchitz continuous function. Following the geometric solution construction of Levy-driven stochastic differential equations in (Williams 2001), we develop a class of epsilon-strong simulation algorithms that allows us to construct a probability space, supporting both the geometric solution Y and a fully simulatable process Y_epsilon, such that Y_epsilon is within epsilon distance from Y under the uniform metric on compact time intervals with probability 1. Moreover, the users can adaptively choose epsilon’ < epsilon, so that Y_epsilon’ can be constructed conditional on Y_epsilon. This tolerance-enforcement feature allows us to easily combine our algorithm with Multilevel Monte Carlo for efficient estimation of expectations, and adding as a benefit a straightforward analysis of rates of convergence. This is joint with Jose Blanchet, Fei He and Offer Kella.

Mon, 26 Feb 2018

15:45 - 16:45
L3

A Support Theorem for Singular Stochastic PDEs

PHILIPP SCHOENBAUER
(Imperial College London)
Abstract

We present a support theorem for subcritical parabolic stochastic partial differential equations (SPDEs) driven by Gaussian noises. In the spirit of the classical theorem by Stroock and Varadhan for ordinary stochastic differential equations, we identify the support of the solution to singular SPDEs with the closure of the union of the support of solutions to approximate and renormalized equations. We implement our approach in the setting of regularity structures and obtain a general result covering a range of singular SPDEs (including $\Phi^4_3$, $\Phi^d_2$, KPZ, PAM (2D+3D), SHE, ...). As a Corollary to our result we obtain the uniqueness of invariant measures for various interesting SPDEs. This is a joint work with Martin Hairer.

Mon, 26 Feb 2018

14:15 - 15:15
L3

Numerically Modelling Stochastic Lie Transport in Fluid Dynamics

WEI PAN
(Imperial College London)
Abstract

We present a numerical investigation of stochastic transport for the damped and driven incompressible 2D Euler fluid flows. According to Holm (Proc Roy Soc, 2015) and Cotter et al. (2017), the principles of transformation theory and multi-time homogenisation, respectively, imply a physically meaningful, data-driven approach for decomposing the fluid transport velocity into its drift and stochastic parts, for a certain class of fluid flows. We develop a new methodology to implement this velocity decomposition and then numerically integrate the resulting stochastic partial differential equation using a finite element discretisation. We show our numerical method is consistent.
Numerically, we perform the following analyses on this velocity decomposition. We first perform uncertainty quantification tests on the Lagrangian trajectories by comparing an ensemble of realisations of Lagrangian trajectories driven by the stochastic differential equation, and the Lagrangian trajectory driven by the ordinary differential equation. We then perform uncertainty quantification tests on the resulting stochastic partial differential equation by comparing the coarse-grid realisations of solutions of the stochastic partial differential equation with the ``true solutions'' of the deterministic fluid partial differential equation, computed on a refined grid. In these experiments, we also investigate the effect of varying the ensemble size and the number of prescribed stochastic terms. Further experiments are done to show the uncertainty quantification results "converge" to the truth, as the spatial resolution of the coarse grid is refined, implying our methodology is consistent. The uncertainty quantification tests are supplemented by analysing the L2 distance between the SPDE solution ensemble and the PDE solution. Statistical tests are also done on the distribution of the solutions of the stochastic partial differential equation. The numerical results confirm the suitability of the new methodology for decomposing the fluid transport velocity into its drift and stochastic parts, in the case of damped and driven incompressible 2D Euler fluid flows. This is the first step of a larger data assimilation project which we are embarking on. This is joint work with Colin Cotter, Dan Crisan, Darryl Holm and Igor Shevchenko.

 

Mon, 19 Feb 2018

15:45 - 16:45
L3

Testing and describing laws of stochastic processes

HARALD OBERHAUSER
(University of Oxford)
Abstract

I will talk about recent work that uses recent ideas from stochastic analysis to develop robust and non-parametric statistical tests for stochastic processes. 

 

Mon, 19 Feb 2018

14:15 - 15:15
L3

Moment bounds on the solutions to some stochastic equations.

MOHAMMUD FOONDUN
(University of Strathclyde)
Abstract

In this talk, we will show how sharp bounds on the moments of the solutions to some stochastic heat equations can lead to various qualitative properties of the solutions. A major part of the method consists of approximating the solution by “independent quantities”. These quantities together with the moments bounds give us sharp almost sure properties of the solution.

Mon, 12 Feb 2018

15:45 - 16:45
L3

Universality phenomena for random nodal domains.

JURGEN ANGST
(Rennes 1 Universite)
Abstract

The study of the Geometry of random nodal domains has attracted a lot of attention in the recent past, in particular due to their connection with famous conjectures such as Yau's conjecture on the nodal volume of eigenfunctions of the Laplacian on compact manifolds, and Berry's conjecture on the relation between the geometry of the nodal sets associated to these eigenfunctions and the geometry of the nodal sets associated to toric random waves.

At first, the randomness involved in the definition of random nodal domains is often chosen of Gaussian nature. This allows in particular the use of explicit techniques, such as Kac--Rice formula, to derive the asymptotics of many observables of interest (nodal volume, number of connected components, Leray's measure etc.). In this talk, we will raise the question of the universality of these asymptotics, which consists in deciding if the asymptotic properties of random nodal domains do or do not depend on the particular nature of the randomness involved. Among other results, we will establish the local and global universality of the asymptotic volume associated to the set of real zeros of random trigonometric polynomials with high degree.