Forthcoming events in this series


Mon, 21 Nov 2016

15:45 - 16:45
L1

The Loewner energy of chords in simply connected domain

YILIN WANG
(ETH Zurich)
Abstract

We study some features of the energy of a deterministic chordal Loewner chain, which is defined as the Dirichlet energy of its driving function in a very directional way. Using an interpretation of this energy as a large deviation rate function for SLE_k as k goes to 0, we show that the energy of a deterministic curve from one boundary point A of a simply connected domain D to another boundary point B, is equal to the energy of its time-reversal i.e. of the same curve but viewed as going from B to A in D. In particular it measures how far does the chord differ from the hyperbolic geodesic. I will also discuss the relation between the energy of the curve with its regularity, some questions are still open. If time allows, I will present the Loewner energy for loops on the Riemann sphere, and open questions related to it as well.


 

Mon, 21 Nov 2016

14:15 - 15:15
L1

Log-concave density estimation

RICHARD SAMWORTH
(Cambridge University)
Abstract

The class of log-concave densities on $\mathbb{R}^d$ is a very natural infinite-dimensional generalisation of the class of Gaussian densities.  I will show that it also allows the statistician to have the best of both the parametric and nonparametric worlds, in that one can obtain a fully automatic density estimator in the class (via maximum likelihood), with no tuning parameters to choose.  I'll discuss its computation, methodological consequences and theoretical properties, and in particular very recent results on minimax rates of convergence and adaptation.

 

Mon, 14 Nov 2016

15:45 - 16:45
L3

Rough path metrics on a Besov-Nikolskii type scale

DAVID PROEMEL
(ETH Zurich)
Abstract

One of the central results in rough path theory is the local Lipschitz continuity of the solution map of a controlled differential equation called Ito-Lyons map. This continuity statement was obtained by T. Lyons in a q-variation resp. 1/q-Hölder type (rough path) metrics for any regularity 1/q>0. We extend this to a new class of Besov-Nikolskii type metrics with arbitrary regularity 1/q and integrability p, which particularly covers the aforementioned results as special cases. This talk is based on a joint work with Peter K. Friz.

 

Mon, 14 Nov 2016

14:15 - 15:15
L3

Tail index estimation, concentration, adaptation...

STEPHANE BOUCHERON
(Université Paris Diderot)
Abstract

This paper presents an adaptive version of the Hill estimator based on Lespki’s model selection method. This simple data-driven index selection method is shown to satisfy an oracle inequality and is checked to achieve the lower bound recently derived by Carpentier and Kim. In order to establish the oracle inequality, we derive non-asymptotic variance bounds and concentration inequalities for Hill estimators. These concentration inequalities are derived from Talagrand’s concentration inequality for smooth functions of independent exponentially distributed random variables combined with three tools of Extreme Value Theory: the quantile transform, Karamata’s representation of slowly varying functions, and Rényi’s characterisation for the order statistics of exponential samples. The performance of this computationally and conceptually simple method is illustrated using Monte-Carlo simulations.

http://projecteuclid.org/euclid.ejs/1450456321  (joint work with Maud Thomas)

Mon, 07 Nov 2016

15:45 - 16:45
L1

Mean field for interacting particles subject to environmental noise

MICHELE COGHI
(University of Pisa Italy)
Abstract

A system of interacting particles described by stochastic differential equations is considered. As opposed to the usual model, where the noise perturbations acting on different particles are independent, here the particles are subject to the same space-dependent noise, similar to the (no interacting) particles of the theory of diffusion of passive scalars. We prove a result of propagation of chaos and show that the limit PDE is stochastic and of in viscid type, as opposed to the case when independent noises drive the different particles. Moreover, we use this result to derive a mean field approximation of the stochastic Euler equations for the vorticity of an incompressible fluid.

Mon, 07 Nov 2016

14:15 - 15:15
L1

Probabilistic Numerical Computation: A New Concept?

MARK GIROLAMI
(University of Warwick)
Abstract

Ambitious mathematical models of highly complex natural phenomena are challenging to analyse, and more and more computationally expensive to evaluate. This is a particularly acute problem for many tasks of interest and numerical methods will tend to be slow, due to the complexity of the models, and potentially lead to sub-optimal solutions with high levels of uncertainty which needs to be accounted for and subsequently propagated in the statistical reasoning process. This talk will introduce our contributions to an emerging area of research defining a nexus of applied mathematics, statistical science and computer science, called "probabilistic numerics". The aim is to consider numerical problems from a statistical viewpoint, and as such provide numerical methods for which numerical error can be quantified and controlled in a probabilistic manner. This philosophy will be illustrated on problems ranging from predictive policing via crime modelling to computer vision, where probabilistic numerical methods provide a rich and essential quantification of the uncertainty associated with such models and their computation. 

Mon, 31 Oct 2016

15:45 - 16:45
L3

Aspects of asymptotic expansions in fractional volatility models

BLANKA HORVATH
(Imperial College London)
Abstract

We revisit small-noise expansions in the spirit of Benarous, Baudoin-Ouyang, Deuschel-Friz-Jacquier-Violante for bivariate diffusions driven by fractional Brownian motions with different Hurst exponents. A particular focus is devoted to rough stochastic volatility models which have recently attracted considerable attention.
We derive suitable expansions (small-time, energy, tails) in these fractional stochastic volatility models and infer corresponding expansions for implied volatility. This sheds light (i) on the influence of the Hurst parameter in the time-decay of the smile and (ii) on the asymptotic behaviour of the tail of the smile, including higher orders.

Mon, 31 Oct 2016

14:15 - 15:15
L3

Model reduction for stochastic differential equations

MARTIN REDMANN
(WIAS Berlin)
Abstract

SPDEs with Lévy noise can be used to model chemical, physical or biological phenomena which contain uncertainties. When discretising these SPDEs in order to solve them numerically the problem might be of large order. The goal is to save computational time by replacing large scale systems by systems of low order capturing the main information of the full model. In this talk, we therefore discuss balancing related MOR techniques. We summarise already existing results and discuss recent achievements.

Mon, 24 Oct 2016

15:45 - 16:45
L3

The stochastic heat equation on a fractal

WEIYE YANG
(University of Oxford)
Abstract

It is well-known that the stochastic heat equation on R^n has a Hölder continuous function-valued solution in the case n=1, and that in dimensions 2 and above the solution is not function-valued but is forced to take values in some wider space of distributions. So what happens if the space has, in some sense, a dimension in between 1 and 2? We turn to the theory of fractals in order to answer this question. It has been shown (Kigami, 2001) that there exists a class of self-similar sets on which natural Laplacians can be defined, and so an analogue to the stochastic heat equation can be posed. In this talk we cover the following questions: Is the solution to this equation function-valued? If so, is it Hölder continuous? To answer the latter we must first prove an analogue of Kolmogorov's celebrated continuity theorem for the self-similar sets that we are working on. Joint work with Ben Hambly.

Mon, 24 Oct 2016

14:15 - 15:15
L3

Inverting the signature of a path

WEIJUN XU
(University of Warwick)
Abstract

We give an explicit scheme to reconstruct any C^1 curve from its signature. It is implementable and comes with detailed stability properties. The key of the inversion scheme is the use of a symmetrisation procedure that separates the behaviour of the path at small and large scales. Joint work with Terry Lyons.

Mon, 17 Oct 2016

15:45 - 16:45
L3

Hopf Algebras in Regularity Structures.

YVAIN BRUNED
(Warwick University)
Abstract

The Regularity Structures introduced by Martin Hairer allow us to describe the solution of a singular SPDEs by a Taylor expansion with new monomials.  We present the two Hopf Algebras used in this theory for defining the structure group and the renormalisation group. We will point out the importance of recursive formulae with twisted antipodes.

Mon, 17 Oct 2016

14:15 - 15:15
L3

Limiting behaviour of a signature

HORATIO BOEDIHARDJO
(Reading University)
Abstract

Signature of a path provides a top down summary of the path as a driving signal. There have been substantial recent progress in reconstructing paths from its signature, (Lyons-Xu 2016, Geng 2016). In this talk, we focus on obtaining certain quantitative features of paths from their signatures. Hambly-Lyons' showed that the normalized limit of signature gives the length of a C^3 path. The result was recently extended by Lyons-Xu to C^1 paths. The extension of this result to bounded variation paths remains open. We will discuss this open problem.

 

Mon, 10 Oct 2016

15:45 - 16:45
L3

Small-time fluctuations for sub-Riemannian diffusion loops

KAREN HABERMANN
(University of Cambridge)
Abstract

We study the small-time fluctuations for diffusion processes which are conditioned by their initial and final positions and whose diffusivity has a sub-Riemannian structure. In the case where the endpoints agree, we discuss the convergence of the suitably rescaled fluctuations to a limiting diffusion loop, which is equal in law to the loop we obtain by taking the limiting process of the unconditioned rescaled diffusion processes and condition it to return to its starting point. The generator of the unconditioned limiting rescaled diffusion process can be described in terms of the original generator.

Mon, 10 Oct 2016

14:15 - 15:15
L3

Lip^\gamma functions on rough path space.

SINA NEJAD
(University of Oxford)
Abstract

Malliavin calculus provides a framework to differentiate functionals defined on a Gaussian probability space with respect to the underlying noise. This allows to develop analysis on path space with infinite-dimensional generalisations of Fourier analysis, Sobolev spaces, etc from R^d. In this talk, we attempt to build a Lipschitz à la E. M. Stein (as opposed to Sobolev) function theory on rough path space. This framework allows to pathwise differentiate functionals on rough paths with respect to the underlying rough path. Time permitting, we show how to obtain Feynman-Kac-type representations for solutions to some high-order (>2) linear parabolic equations on R^d.

Mon, 13 Jun 2016

15:45 - 16:45
C6

Homogenization for families of skew products

ALEXEY KOREPANOV
(Warwick University)
Abstract

 

We consider families of fast-slow skew product maps of the form \begin{align*}x_{n+1}   = x_n+\eps^2 a_\eps(x_n,y_n)+\eps b_\eps(x_n)v_\eps(y_n), \quad

y_{n+1}   = T_\eps y_n, \end{align*} where $T_\eps$ is a family of nonuniformly expanding maps, $v_\eps$ is of mean zero and the slow variables $x_n$ lie in $\R^d$.  Under an exactness assumption on $b_\eps$ (automatically satisfied in the cases $d=1$ and $b_\eps\equiv I_d$), we prove convergence of the slow variables to a limiting stochastic differential equation (SDE) as $\eps\to0$.   Our results include cases where the family of fast dynamical systems

$T_\eps$ consists of intermittent maps, unimodal maps (along the Collet-Eckmann parameters) and Viana maps.Similar results are obtained also for continuous time systems  \begin{align*} \dot x   =  \eps^2 a_\eps(x,y,\eps)+\eps b_\eps(x)v_\eps(y), \quad \dot y   =  g_\eps(y). \end{align*}

Here, as in classical Wong-Zakai approximation, the limiting SDE is of Stratonovich type $dX=\bar a(X)\,dt+b_0(X)\circ\,dW$ where $\bar a$ is the average of $a_0$

and $W$ is a $d$-dimensional Brownian motion.

 

Mon, 13 Jun 2016

14:15 - 15:15
C6

Asymptotic of planar Yang-Mills fields

ANTOINE DAHLQVIST
(University of Cambridge)
Abstract

This talk will be about  Lévy processes on compact groups - discrete or continuous - and  two-dimensional analogues called pure Yang-Mills fields. The latter are indexed by  reduced loops of finite length in the plane and satisfy properties analogue to independence and stationarity of increments.     There is a one-to-one correspondance between Lévy processes invariant by adjunction and pure Yang-Mills fields. For Brownian motions, Yang-Mills fields stand for a rigorous version of the Euclidean Yang-Mills measure in two dimension.  I shall first sketch this correspondance for  Lévy processes with large jumps. Then, I will discuss two applications of an extension theorem, due to Thierry Lévy, similar to Kolmogorov extension theorem. On the one hand, it allows to construct pure Yang-Mills fields for any invariant Lévy process. On the other hand, when the group acts on vector spaces of large dimension, this theorem also allows to study the asymptotic behavior  of traces. The limiting objects yield a natural family of states on the group algebra of reduced loops.  We characterize among them the master field defined by Thierry Lévy by a continuity property.   This is  a joint work with Guillaume Cébron and Franck Gabriel.

Mon, 06 Jun 2016

15:45 - 16:45
C6

A backward stochastic differential equation approach to singular stochastic control

YING HU
(Universite Rennes 1)
Abstract

Singular stochastic control problems ae largely studied in literature.The standard approach is to study the associated Hamilton-Jacobi-Bellman equation (with gradient constraint). In this work, we use a different approach (BSDE:Backward stochastic differntial equation approach) to show that the optimal value is a solution to BSDE.

The advantage of our approach is that we can study this kind of singular stochastic control with path-dependent coefficients

Mon, 06 Jun 2016

14:15 - 15:15
C6

Well-posedness and regularizing properties of stochastic Hamilton-Jacobi equations

PAUL GASSIAT
(Université Paris Dauphine)
Abstract

We consider fully nonlinear parabolic equations of the form $du = F(t,x,u,Du,D^2 u) dt + H(x,Du) \circ dB_t,$ which can be made sense of by the Lions-Souganidis theory of stochastic viscosity solutions. I will first recall the ideas of this theory, and will discuss more recent developments (including the use of rough path theory in this context). In the second part of my talk, I will explain how in the case where $H(x,Du)=|Du|^2$, the solution $u$ may enjoy better regularity properties than the solution to the unperturbed equation, which can be measured by (a pair of) solutions to a reflected SDE. Based on joint works with P. Friz, B. Gess, P.L. Lions and P. Souganidis.

 

Mon, 23 May 2016

15:45 - 16:45
C6

Conformal invariance of correlations in the planar Ising model.

KONSTANTIN IZYUROV
(University of Helsinki)
Abstract

The planar Ising model is one of the simplest and most studied models in Statistical Mechanics. On one hand, it has a rich and interesting phase transition behaviour. On the other hand, it is "solvable" enough to allow for many rigorous and exact results. This, in particular, makes it one of the prime examples in Conformal Field Theory (CFT). In this talk, I will review my joint work with C. Hongler and D. Chelkak on the scaling limits of correlations in the planar Ising model at criticality. We prove that these limits exist, are conformally covariant and given by explicit formulae consistent with the CFT predictions. This may be viewed as a step towards a rigorous understanding of CFT in the case of the Ising model.TBC

Mon, 23 May 2016

14:15 - 15:15
C6

Einstein relation and steady states for the random conductance model

NINA GANTERT
(T U Munich Germany)
Abstract

We consider the random conductance model: random walk among iid, uniformly elliptic conductnace on the d-dimensional lattice. We state,and explain, the Einstein relation for this model:It says that the derivative of the velocity of a biased walk as a function of the bias equals the diffusivity in equilibrium. For fixed bias, we show that there is an invariant measure for the environment seen from the particle.These invariant measures are often called steady states.

The Einstein relation follows, at least for dimensions three and larger, from an expansion of the steady states as a function of the bias.

The talk is gase on joint work with Jan Nagel and Xiaoqin Guo

 

Mon, 16 May 2016

14:15 - 15:15
C6

Heat equation driven by a space-time fractional noise

AURELIEN DEYA
(university of Lorraine France)
Abstract

The extension of standard stochastic models (SDEs, SPDEs) to general fractional noises is known to be a tricky issue, which cannot be studied within the classical martingale setting. We will see how the recently-introduced theory of regularity structures allows us to overcome these difficulties, in the case of a heat equation model with non-linear perturbation driven by a space-time fractional Brownian motion.

The analysis relies in particular on the exhibition of an explicit process at the core of the dynamics, the so-called K-rough path, the definition of which shows strong similarities with that of a classical rough path.

Mon, 09 May 2016

15:45 - 16:45
C6

Global quantizations with and without symmetries

MICHAEL RUZHANSKY
(Imperial College London)
Abstract

In this talk we will give an overview of the recent research on global quantizations on spaces of different types: compact and nilpotent Lie groups, general locally compact groups, compact manifolds with boundary.

Mon, 09 May 2016

14:15 - 15:15
C6

Gaussian Heat-kernel for the RCM with unbounded conductances

OMAR BOUKHADRA
(University of Constantine 1)
Abstract

The talk will focus on continuous time random walk with unbounded i.i.d. random conductances on the grid $\mathbb{Z}^d$  In the first place, in a joint work with Kumagai and Mathieu, we obtain Gaussian heat kernel bounds and also local CLT for bounded from above and not bounded from below conductances. The proof is given at first in a general framework, then it is specified in the case of plynomial lower tail conductances. It is essentially based on percolation and spectral analysis arguments, and Harnack inequalities. Then we will discuss the same questions for the same model with i.i.d. random conductances, bounded from below and with finite expectation.

Mon, 07 Mar 2016

15:45 - 16:45
C4

Superhedging Approach to Robust Finance and Local Times

David Proemel
(ETH Zurich)
Abstract

Using Vovk's game-theoretic approach to mathematical finance and probability, it is possible to obtain new results in both areas.We first prove that one can make an arbitrarily large profit by investing in those one-dimensional paths which do not possess a local time of finite p-variation.  Additionally, we provide pathwise Tanaka formulas suitable for our local times and for absolutely continuous functions with sufficient regular derivatives. In the second part we derive a model-independent super-replication theorem in continuous time. Our result covers a broad range of exotic derivatives, including look-back options, discretely monitored Asian options, and options on realized variance.
 This talk is based on joint works with M. Beiglböck, A.M.G. Cox, M. Huesmann and N. Perkowski.


 

Mon, 07 Mar 2016

14:15 - 15:15
C4

Singular SPDEs on manifolds

Joscha Diehl
(TU Berlin)
Abstract

 

We show how the theories of paracontrolled distributions and regularity structures can be implemented on manifolds, to solve singular SPDEs like the parabolic Anderson model.

This is ongoing work with Bruce Driver (UCSD) and Antoine Dahlqvist (Cambridge)

 

 

Mon, 29 Feb 2016

15:45 - 16:45
C4

Malliavin Calculus for Regularity Structures: the case of gPAM

Guiseppe Cannizzaro
(TU Berlin)
Abstract

Malliavin calculus is implemented in the context of [M. Hairer, A theory of regularity structures, Invent. Math. 2014]. This involves some constructions of independent interest, notably an extension of the structure which accommodates a robust and purely deterministic translation operator in L^2-directions between models. In the concrete context of the generalized parabolic Anderson model in 2D -one of the singular SPDEs discussed in the afore-mentioned article - we establish existence of a density at positive times.

Mon, 29 Feb 2016

14:15 - 15:15
C4

Rough Gronwall Lemma and weak solutions to RPDEs

Martina Hofmanova
(TU Berlin)
Abstract

In this talk, I will present recent results that give the necessary mathematical foundation for the study of rough path driven PDEs in the framework of weak solutions. The main tool is a new rough Gronwall Lemma argument whose application is rather wide: among others, it allows to derive the basic energy estimates leading to the proof of existence for e.g. parabolic RPDEs. The talk is based on a joint work with Aurelien Deya, Massimiliano Gubinelli and Samy Tindel.

Mon, 22 Feb 2016

15:45 - 16:45
L5

Renormalisation in Regularity Structures

Lorenzo Zambotti
(Universite of Paris 6)
Abstract

In this talk we want to present a detailed study of the algebraic objects appearing in the theory of regularity structures. In particular we aim at introducing a class of co-algebras on labelled forests and trees and show that these allow to describe in an unified setting the structure group and the renormalisation group. Based on joint work with Yvain Bruned and Martin Hairer

          

Mon, 22 Feb 2016

14:15 - 15:15
L5

Rough differential equations and random dynamical systems

Sebastian Riedel
(TU Berlin University)
Abstract

We aim to study the long time behaviour of the solution to a rough differential equation (in the sense of Lyons) driven by a random rough path. To do so, we use the theory of random dynamical systems. In a first step, we show that rough differential equations naturally induce random dynamical systems, provided the driving rough path has stationary increments. If the equation satisfies a strong form of stability, we can show that the solution admits an invariant measure.

This is joint work with I. Bailleul (Rennes) and M. Scheutzow (Berlin).    

Mon, 15 Feb 2016

15:45 - 16:45
L5

A Stratonovich-Skorohod integral formula for Gaussian rough paths.

Nengli Lim
(Imperial College London)
Abstract

We derive a Stratonovich-to-Skorohod integral conversion formula for a class of integrands which are path-level solutions to RDEs driven by Gaussian rough paths. This is done firstly by showing that this class lies in the domain of the Skorohod integral, and secondly, by appending the Riemann-sum approximants of the Skorohod integral with a suitable compensation term. To show the convergence of the Riemann-sum approximants, we utilize a novel characterization of the Cameron-Martin norm using higher dimensional Young-Stieltjes integrals. Moreover, in the case where complementary regularity is absent, i.e. when the integrand has finite p-variation and the integrator has finite q-variation but 1/p + 1/q <= 1, we give new and sufficient conditions for the convergence these Young integrals.

Mon, 15 Feb 2016

14:15 - 15:00
L5

'From differentially subordinate martingales under a change of law to optimal weighted estimates in harmonic analysis'

Stefanie Petermichl
(Toulouse)
Abstract

The Hilbert transform is a central operator in harmonic analysis as it gives access to the harmonic conjugate function. The link between pairs of martingales (X,Y) under differential subordination and the pair (f,Hf) of a function and its Hilbert transform have been known at least since the work of Burkholder and Bourgain in the UMD setting.

During the last 20 years, new and more exact probabilistic interpretations of operators such as the Hilbert transform have been studied extensively. The motivation for this was in part the study of optimal weighted estimates in harmonic analysis. It has been known since the 70s that H:L^2(w dx) to L^2(w dx) if and only if w is a Muckenhoupt weight with its finite Muckenhoupt characteristic. By a sharp estimate we mean the correct growth of the weighted norm in terms of this characteristic. In one particular case, such an estimate solved a long standing borderline regularity problem in complex PDE.

In this lecture, we present the historic development of the probabilistic interpretation in this area, as well as recent results and open questions.

Mon, 01 Feb 2016

15:45 - 16:45
L5

Kolmogorov equations in infinite dimensions

Adam Anderson
(TU Berlin University)
Abstract

Abstract: Kolmogorov backward equations related to stochastic evolution equations (SEE) in Hilbert space, driven by trace class Gaussian noise have been intensively studied in the literature. In this talk I discuss the extension to non trace class Gaussian noise in the particular case when the leading linear operator generates an analytic semigroup. This natural generalization leads to several complications, requiring new existence and uniqueness results for SEE with initial singularities and a new notion of an extended transition semigroup. This is joint work with Arnulf Jentzen and Ryan Kurniawan (ETH).

 

Mon, 01 Feb 2016

14:15 - 15:15
L5

Hölder regularity for a non-linear parabolic equation driven by space-time white noise

Hendrik Weber
(University of Warwick)
Abstract

We consider the non-linear equation $T^{-1} u+\partial_tu-\partial_x^2\pi(u)=\xi$

driven by space-time white noise $\xi$, which is uniformly parabolic because we assume that $\pi'$ is bounded away from zero and infinity. Under the further assumption of Lipschitz continuity of $\pi'$ we show that the stationary solution is - as for the linear case - almost surely Hölder continuous with exponent $\alpha$ for any $\alpha<\frac{1}{2}$ w. r. t. the parabolic metric. More precisely, we show that the corresponding local Hölder norm has stretched exponential moments.

On the stochastic side, we use a combination of martingale arguments to get second moment estimates with concentration of measure arguments to upgrade to Gaussian moments. On the deterministic side, we first perform a Campanato iteration based on the De Giorgi-Nash Theorem as well as finite and infinitesimal versions of the $H^{-1}$-contraction principle, which yields Gaussian moments for a weaker Hölder norm. In a second step this estimate is improved to the optimal

Hölder exponent at the expense of weakening the integrability to stretched exponential.

 

This is joint work with Felix Otto.

 

Mon, 25 Jan 2016

15:45 - 16:45
L5

Higher order theory for renewal sequences with infinite mean.

Dalia Terhesiu
(Exeter University)
Abstract


First order asymptotic of scalar renewal sequences with infinite mean characterized by regular variation has been classified in the 60's (Garsia and Lamperti). In the recent years, the question of higher order asymptotic for renewal sequences with infinite mean was motivated by obtaining 'mixing rates' for dynamical systems with infinite measure. In this talk I will present the recent results we have obtained on higher order expansion for renewal sequences with infinite mean (not necessarily generated by independent processes) in the regime of slow regular variation (with small exponents).  I will also discuss some consequences of these results for error rates in certain limit theorems (such as arcsine law for null recurrent Markov processes).

 

Mon, 25 Jan 2016

14:15 - 15:45
L5

Propagation in a non-local reaction-diffusion equation

Christopher Henderson
(ENS Lyon)
Abstract

The first reaction-diffusion equation developed and studied is the Fisher-KPP equation.  Introduced in 1937, it accounts for the spatial spreading and growth of a species.  Understanding this population-dynamics model is equivalent to understanding the distribution of the maximum particle in a branching Brownian motion.  Various generalizations of this model have been studied in the eighty years since its introduction, including a model with non-local reaction for the cane toads of Australia introduced by Benichou et. al.  I will begin the talk by giving an extended introduction on the Fisher-KPP equation and the typical behavior of its solutions.  Afterwards, I will describe the model for the cane toads equations and give new results regarding this model.  In particular, I will show how the model may be viewed as a perturbation of a local equation using a new Harnack-type inequality and I will discuss the super-linear in time propagation of the toads.  The talk is based on a joint work with Bouin and Ryzhik.

 

---
 

Mon, 18 Jan 2016

15:45 - 16:45
L5

"On the splitting phenomenon in the Sathe-Selberg theorem: universality of the Gamma factor

Yacine Barhoumi
(University of Warwick)
Abstract

We consider several classes of sequences of random variables whose Laplace transform presents the same type of \textit{splitting phenomenon} when suitably rescaled. Answering a question of Kowalski-Nikeghbali, we explain the apparition of a universal term, the \textit{Gamma factor}, by a common feature of each model, the existence of an auxiliary randomisation that reveals an independence structure.
The class of examples that belong to this framework includes random uniform permutations, random polynomials or random matrices with values in a finite field and the classical Sathe-Selberg theorems in probabilistic number theory. We moreover speculate on potential similarities in the Gaussian setting of the celebrated Keating and Snaith's moments conjecture. (Joint work with R. Chhaibi)
 

Mon, 18 Jan 2016

14:15 - 15:15
L5

Stein methods for Brownian motion

Laure Coutin
(Université de Toulouse)
Abstract

Motivated by a theorem of Barbour, we revisit some of the classical limit theorems in probability from the viewpoint of the Stein method. We setup the framework to bound Wasserstein distances between some distributions on infinite dimensional spaces. We show that the convergence rate for
the Poisson approximation of the Brownian motion is as expected proportional to λ −1/2 where λ is the intensity of the Poisson process. We also exhibit the speed of convergence for the Donsker Theorem and extend this result to enhanced Brownian motion.

 

Mon, 30 Nov 2015

15:45 - 16:45
Oxford-Man Institute

TBC

KHALIL CHOUK
(Bonn University)
Abstract

TBC