Forthcoming events in this series


Mon, 23 Oct 2017

14:15 - 15:15
L3

On some heavy-tail phenomena occurring in large deviations

FANNY AUGERI
(Weizmann Institute Israel)
Abstract

In this talk, we will revisit the proof of the large deviations principle of Wiener chaoses partially given by Borell, and then by Ledoux in its full form. We show that some heavy-tail phenomena observed in large deviations can be explained by the same mechanism as for the Wiener chaoses, meaning that the deviations are created, in a sense, by translations. More precisely, we prove a general large deviations principle for a certain class of functionals $f_n : \mathbb{R}^n \to \mathcal{X}$, where $\mathcal{X}$ is some metric space, under the probability measure $\nu_{\alpha}^n$, where $\nu_{\alpha} =Z_{\alpha}^{-1}e^{-|x|^{\alpha}}dx$, $\alpha \in (0,2]$, for which the large deviations are due to translations. We retrieve, as an application, the large deviations principles known for the so-called Wigner matrices without Gaussian tails of the empirical spectral measure, the largest eigenvalue, and traces of polynomials. We also apply our large deviations result to the last-passage time which yields a large deviations principle when the weight matrix has law $\mu_{\alpha}^{n^2}$, where $\mu_{\alpha}$ is the probability measure on $\mathbb{R}^+$ with density $2Z_{\alpha}^{-1}e^{-x^{\alpha}}$ when $\alpha \in (0,1)$.

 

Mon, 16 Oct 2017

15:45 - 16:45
L3

A signature-based machine learning model for bipolar disorder and borderline personality disorder

IMANOL PEREZ
(University of Oxford)
Abstract

The signature of a path has many properties that make it an excellent feature to be used in machine learning. We exploit this properties to analyse a stream of data that arises from a psychiatric study whose objective is to analyse bipolar and borderline personality disorders. We build a machine learning model based on signatures that tries to answer two clinically relevant questions, based on observations of their reported state over a short period of time: is it possible to predict if a person is healthy, has bipolar disorder or has borderline personality disorder? And given a person or borderline personality disorder, it is possible to predict his or her future mood? Signatures proved to be very effective to tackle these two problems.

Mon, 16 Oct 2017

14:15 - 15:15
L3

On uniqueness and blowup properties for a class of second order SDES

EYAL NEUMAN
(Imperial College London)
Abstract

 

Abstract. As the first  step for approaching the uniqueness and blowup properties of the solutions of the stochastic wave equations with multi-plicative noise, we analyze the conditions for the uniqueness and blowup properties of the solution (Xt; Yt) of the equations dXt = Ytdt, dYt = jXtj_dBt, (X0; Y0) = (x0; y0). In particular, we prove that solutions arenonunique if 0 < _ < 1 and (x0; y0) = (0; 0) and unique if 1=2 < _ and (x0; y0) 6= (0; 0). We also show that blowup in _nite time holds if _ > 1 and (x0; y0) 6= (0; 0).

This is a joint work with A. Gomez, J.J. Lee, C. Mueller and M. Salins.

 

Mon, 09 Oct 2017

14:15 - 15:15
L3

Inverting the signature of a path

JIAWEI CHANG
(University of Oxford)
Abstract

Inverting the signature of a path with ideas from linear algebra with implementations.

Mon, 12 Jun 2017

15:45 - 16:45
L3

A weak universality result for the parabolic Anderson model

NICOLAS PERKOWSKI
(HU Berlin)
Abstract

We consider a class of nonlinear population models on a two-dimensional lattice which are influenced by a small random potential, and we show that on large temporal and spatial scales the population density is well described by the continuous parabolic Anderson model, a linear but singular stochastic PDE. The proof is based on a discrete formulation of paracontrolled distributions on unbounded lattices which is of independent interest because it can be applied to prove the convergence of a wide range of lattice models. This is joint work with Jörg Martin.

Mon, 05 Jun 2017

15:45 - 16:45
L3

A coupling approach to the kinetic Langevin equation

ANDREAS EBERLE
(University of Bonn)
Abstract


The (kinetic) Langevin equation is an SDE with degenerate noise that describes the motion of a particle in a force field subject to damping and random collisions. It is also closely related to Hamiltonian Monte Carlo methods. An important open question is, why in certain cases kinetic Langevin diffusions seem to approach equilibrium faster than overdamped Langevin diffusions. So far, convergence to equilibrium for kinetic Langevin diffusions has almost exclusively been studied by analytic techniques. In this talk, I present a new probabilistic approach that is based on a specific combination of reflection and synchronous coupling of two solutions of the Langevin equation. The approach yields rather precise bounds for convergence to equilibrium at the borderline between the overdamped and the underdamped regime, and it may help to shed some light on the open question mentioned above.

Mon, 05 Jun 2017

14:15 - 15:15
L3

Derivative formulae and estimates for diffusion processes and semigroups

DAVID ELWORTHY
(Warwick University)
Abstract

 There is a routine for obtaining formulae for derivatives of smooth heat semigroups,and for certain heat semigroups acting on differential forms etc, established some time ago by myself, LeJan, & XueMei Li.  Following a description of this in its general form, I will discuss its applicability in some sub-Riemannian situations and to higher order derivatives.

 

Mon, 22 May 2017

15:45 - 16:45
L3

A Stratonovich-to-Skorohod conversion formula for integrals with respect to Gaussian rough paths

THOMAS CASS
(Imperial College London)
Abstract

Lyons’ theory of rough paths allows us to solve stochastic differential equations driven by a Gaussian processes X of finite p-variation. The rough integral of the solutions against X again exists. We show that the solution also belong to the domain of the divergence operator of the Malliavin derivative, so that the 'Skorohod integral' of the solution with respect to X can also be defined. The latter operation has some properties in common with the Ito integral, and a natural question is to find a closed-form conversion formula between this rough integral and its Malliavin divergence. This is particularly useful in applications, where often one wants to compute the (conditional) expectation of the rough integral. In the case of Brownian motion our formula reduces to the classical Stratonovich-to-Ito conversion formula. There is an interesting difference between the formulae obtained in the cases 2<=p<3 and 3<=p<4, and we consider the reasons for this difference. We elaborate on the connection with previous work in which the integrand is generally assumed to be the gradient of a smooth function of X_{t}; we show that our formula can recover these results as special cases. This is joint work with Nengli Lim.

Mon, 22 May 2017

14:15 - 15:15
L3

Convergence of percolation on uniform quadrangulations

JASON MILLER
(University of Cambridge)
Abstract

Let Q be a uniformly random quadrangulation with simple boundary decorated by a critical (p=3/4) face percolation configuration.  We prove that the chordal percolation exploration path on Q between two marked boundary edges converges in the scaling limit to SLE(6) on the Brownian disk (equivalently, a Liouville quantum gravity surface).  The topology of convergence is the Gromov-Hausdorff-Prokhorov-uniform topology, the natural analog of the Gromov-Hausdorff topology for curve-decorated metric measure spaces.  Our method of proof is robust and, up to certain technical steps, extends to any percolation model on a random planar map which can be explored via peeling.  Joint work with E. Gwynne.

Mon, 15 May 2017

15:45 - 16:45
L3

Well-posedness by noise for scalar conservation laws

BENJAMIN GESS
(Max Plank Institute and Unviersidad Bielefeld)
Abstract

In certain cases of (linear) partial differential equations random perturbations have been observed to cause regularizing effects, in some cases even producing the uniqueness of solutions. In view of the long-standing open problems of uniqueness of solutions for certain PDE arising in fluid dynamics such results are of particular interest. In this talk we will extend some known results concerning the well-posedness by noise for linear transport equations to the nonlinear case.

Mon, 15 May 2017

14:15 - 15:15
L3

Renormalisation of SPDE's

ILYA CHEVYREV
(University of Oxford)
Abstract

Recent work in regularity structures has provided a robust solution theory for a wide class of singular SPDEs. While much progress has been made on understanding the analytic and algebraic aspects of renormalisation of the driving signal, the action of the renormalisation group on the equation still needed to be performed by hand. In this talk, we aim to give a systematic description of the renormalisation procedure directly on the level of the PDE, which allows for explicit computation of the form of the renormalised equation. Joint work with Yvain Bruned, Ajay Chandra, and Martin Hairer.

 

Mon, 08 May 2017

15:45 - 16:45
L3

Weak Solutions of a Stochastic Landau-Lifshitz-Gilbert Equation Driven by Pure Jump Noise

ZDZISLAW BRZEZNIAK
(York University)
Abstract

In this work we study a stochastic three-dimensional Landau-Lifschitz-Gilbert equation perturbed by pure jump noise in the Marcus canonical form. We show existence of weak martingale solutions taking values in a two-dimensional sphere $\mathbb{S}^3$ and discuss certain regularity results. The construction of the solution is based on the classical Faedo-Galerkin approximation, the compactness method and the Jakubowski version of the Skorokhod Theorem for nonmetric spaces. This is a joint work with Utpal Manna (Triva

Mon, 08 May 2017

14:15 - 15:15
L3

Characterising path-independence of Girsanov transform for stochastic differential equations

JIANG-LUN WU
(Swansea University)
Abstract

This talk will address a new link from stochastic differential equations (SDEs) to nonlinear parabolic PDEs. Starting from the necessary and sufficient condition of the path-independence of the density of Girsanov transform for SDEs, we derive characterisation by nonlinear parabolic equations of Burgers-KPZ type. Extensions to the case of SDEs on differential manifolds and the case od SDEs with jumps as well as to that of (infinite dimensional) SDEs on separable Hilbert spaces will be discussed. A perspective to stochastically deformed dynamical systems will be briefly considered.

Mon, 24 Apr 2017

15:45 - 16:45
L3

An analytic BPHZ theorem for regularity structures

AJAY CHANDRA
(University of Warwick)
Abstract

I will described how ideas from constructive quantum field theory can be adapted to produce a systematic approach for analytic renormalization in the theory of regularity structures.

Mon, 24 Apr 2017

14:15 - 15:15
L3

The harmonic measure on the boundary of Hastings-Levitov clusters

VITTORIA SILVESTRI
(University of Cambridge)
Abstract

The Hastings-Levitov models describe the growth of random sets (or clusters) in the complex plane as the result of iterated composition of random conformal maps. The correlations between these maps are determined by the harmonic measure density profile on the boundary of the clusters. In this talk I will focus on the simplest case, that of i.i.d. conformal maps, and obtain a description of the local fluctuations of the harmonic measure density around its deterministic limit, showing that these are Gaussian. This is joint work with James Norris.

Mon, 06 Mar 2017

15:45 - 16:45
L3

Percolation of random nodal lines

DAMIEN GAYET
(Universite Grenoble-Alpes)
Abstract

If we fix a rectangle in the affine real space and if we choose at random a real polynomial with given degree d, the probability P(d) that a component of its vanishing locus crosses the rectangle in its length is clearly positive. But is P(d) uniformly bounded from below when d increases? I will explain a positive answer to a very close question involving real analytic functions. This is a joint work with Vincent Beffara.

 

Mon, 06 Mar 2017

14:15 - 15:15
L3

Mathematical connection between Statistical Mechanics and Conformal Field Theory: an Ising model perspective

CLEMENT HONGLER
(EPFL (Ecole Polytechnique Federale de Lausanne))
Abstract

The Ising model is one of the most classical statistical mechanics model, which has seen spectacular mathematical and physical developments for almost a century. The description of its scaling limit at the phase transition is at the center of a fascinating (conjectured) connection between statistical mechanics and field theories. I will discuss how recent mathematical progress allows one to make the connection between the two-dimensional Ising model and Conformal Field Theory rigorous. If time allows, I will discuss the insight this gives one into related models and field theories.

Based off joint works with S. Benoist, D. Chelkak, H. Duminil-Copin, R. Gheissari, K. Izyurov, F. Johansson-Viklund, K. Kytölä, S. Park and S. Smirnov

Mon, 27 Feb 2017

15:45 - 16:45
L3

Perturbation to conservation laws

XUE-MEI LI
(University of Warwick)
Abstract

If a dynamical system has a conservation law, i.e. a constant along the trajectory of the motion, the study of its evolution along the trajectories of a perturbed system becomes interesting. Conservation laws can be seen everywhere, especially at the level of probability distributions of a reduced dynamic.  We explain this with a number of models, in which we see a singular perturbation problem and identify a conservation law, the latter is used to seek out the correct scale to work with and to reduce the complexity of the system. The reduced dynamic consists of a family of  ODEs with rapidly oscillating right hands side from which in the limit we obtain a Markov process. For stochastic completely integrable system, the limit describes the evolution of the level sets of the family of Hamiltonian functions over a very large time scale.

Mon, 27 Feb 2017

14:15 - 15:15
L3

The Yang-Mills heat equation on compact manifolds with boundary.

NELIA CHARALAMBOUS
(University of Cyprus)
Abstract

The Yang-Mills heat equation is the gradient flow corresponding to the Yang-Mills functional. It was initially introduced by S. K. Donaldson to study the existence of irreducible Yang-Mills connections on the projective plane. In this talk, we will consider this equation over compact three-manifolds with boundary. It is a nonlinear weakly parabolic equation, but we will see how one can prove long-time existence and uniqueness of solutions by gauge symmetry breaking. We will also demonstrate some strong regularization results for the solution and see how they lead to detailed short-time asymptotic estimates, as well as the long-time convergence of the Wilson loop functions. 

Mon, 20 Feb 2017

15:45 - 16:45
L3

Bloch functions, asymptotic variance, and geometric zero packing

HAKAN HEDENMALM
(KTH Stockholm)
Abstract

Motivated by a problem in quasiconformal mapping, we introduce a new type of problem in complex analysis, with its roots in the mathematical physics of the Bose-Einstein condensates in superconductivity.The problem will be referred to as \emph{geometric zero packing}, and is somewhat analogous to studying Fekete point configurations.The associated quantity is a density, denoted  $\rho_\C$ in the planar case, and $\rho_{\mathbb{H}}$ in the case of the hyperbolic plane.We refer to these densities as \emph{discrepancy densities for planar and hyperbolic zero packing}, respectively, as they measure the impossibility of atomizing the uniform planar and hyperbolic area measures.The universal asymptoticvariance $\Sigma^2$ associated with the boundary behavior of conformal mappings with quasiconformal extensions of small dilatation is related to one of these discrepancy densities: $\Sigma^2= 1-\rho_{\mathbb{H}}$.We obtain the estimates$2.3\times 10^{-8}<\rho_{\mathbb{H}}\le0.12087$, where the upper estimate is derived from the estimate from below on $\Sigma^2$ obtained by Astala, Ivrii, Per\"al\"a,  and Prause, and the estimate from below is much more delicate.In particular, it follows that $\Sigma^2<1$, which in combination with the work of Ivrii shows that the maximal fractal dimension of quasicircles conjectured by Astala cannot be reached.Moreover, along the way, since the universal quasiconformal integral means spectrum has the asymptotics$\mathrm{B}(k,t)\sim\frac14\Sigma^2 k^2|t|^2$ for small $t$ and $k$, the conjectured formula $\mathrm{B}(k,t)=\frac14k^2|t|^2$ is not true.As for the actual numerical values of the discrepancy density $\rho_\C$, we obtain the estimate from above $\rho_\C\le0.061203\ldots$ by using the equilateral triangular planar zero packing, where the assertion that equality should hold can be attributed to Abrikosov. The values of $\rho_{\mathbb{H}}$ is expected to be somewhat close to the value of $\rho_\C$.

Mon, 20 Feb 2017

14:15 - 15:15
L3

A Statistical Model of Urban Retail Structure

LOUIS ELLAM
(Imperial College)
Abstract

One of the challenges of 21st-century science is to model the evolution of complex systems.  One example of practical importance is urban structure, for which the dynamics may be described by a series of non-linear first-order ordinary differential equations.  Whilst this approach provides a reasonable model of urban retail structure, it is somewhat restrictive owing to uncertainties arising in the modelling process.

We address these shortcomings by developing a statistical model of urban retail structure, based on a system of stochastic differential equations.   Our model is ergodic and the invariant distribution encodes our prior knowledge of spatio-temporal interactions.  We proceed by performing inference and prediction in a Bayesian setting, and explore the resulting probability distributions with a position-specific metrolpolis-adjusted Langevin algorithm.

Mon, 13 Feb 2017

15:45 - 16:45
L3

Probabilistic Numerical Computation: A New Concept?

MARK GIROLAMI
(Imperial College London)
Abstract

Ambitious mathematical models of highly complex natural phenomena are challenging to analyse, and more and more computationally expensive to evaluate. This is a particularly acute problem for many tasks of interest and numerical methods will tend to be slow, due to the complexity of the models, and potentially lead to sub-optimal solutions with high levels of uncertainty which needs to be accounted for and subsequently propagated in the statistical reasoning process. This talk will introduce our contributions to an emerging area of research defining a nexus of applied mathematics, statistical science and computer science, called "probabilistic numerics". The aim is to consider numerical problems from a statistical viewpoint, and as such provide numerical methods for which numerical error can be quantified and controlled in a probabilistic manner. This philosophy will be illustrated on problems ranging from predictive policing via crime modelling to computer vision, where probabilistic numerical methods provide a rich and essential quantification of the uncertainty associated with such models and their computation. 

Mon, 13 Feb 2017

14:15 - 15:15
L3

Sub-Quadratic Recovery of Correlated Pair

GRAHAM CORMODE
(University of Warwick)
Abstract

Identifying correlations within multiple streams of high-volume time series is a general but challenging problem.  A simple exact solution has cost that is linear in the dimensionality of the data, and quadratic in the number of streams.  In this work, we use dimensionality reduction techniques (sketches), along with ideas derived from coding theory and fast matrix multiplication to allow fast (subquadratic) recovery of those pairs that display high correlation.

Joint work with Jacques Dark