Forthcoming events in this series


Mon, 29 Apr 2019

14:15 - 15:15
L3

Scaling limits and surface tension for gradient Gibbs measure

WEI WU
(Warwick University)
Abstract

I will discuss new results for the gradient field models with uniformly convex potential (also known as the Ginzburg-Landau field). A connection between the scaling limits of the field and elliptic homogenization was introduced by Naddaf and Spencer in 1997. We quantify the existing central limit theorems in light of recent advances in quantitative homogenization; and positively settle a conjecture of Funaki and Spohn about the surface tension. Joint work with Scott Armstrong. 

 

Mon, 04 Mar 2019

15:45 - 16:45
L3

Numerical approximation of BSDEs with polynomial growth driver

ARNAUD LIONNET
(Birmingham University)
Abstract

Backward Stochastic Differential Equations (BSDEs) provide a systematic way to obtain Feynman-Kac formulas for linear as well as nonlinear partial differential equations (PDEs) of parabolic and elliptic type, and the numerical approximation of their solutions thus provide Monte-Carlo methods for PDEs. BSDEs are also used to describe the solution of path-dependent stochastic control problems, and they further arise in many areas of mathematical finance. 

In this talk, I will discuss the numerical approximation of BSDEs when the nonlinear driver is not Lipschitz, but instead has polynomial growth and satisfies a monotonicity condition. The time-discretization is a crucial step, as it determines whether the full numerical scheme is stable or not. Unlike for Lipschitz driver, while the implicit Bouchard-Touzi-Zhang scheme is stable, the explicit one is not and explodes in general. I will then present a number of remedies that allow to recover a stable scheme, while benefiting from the reduced computational cost of an explicit scheme. I will also discuss the issue of numerical stability and the qualitative correctness which is enjoyed by both the implicit scheme and the modified explicit schemes. Finally, I will discuss the approximation of the expectations involved in the full numerical scheme, and their analysis when using a quasi-Monte Carlo method.

Mon, 04 Mar 2019

14:15 - 15:15
L3

Support characterisation for path-dependent SDEs

ALEXANDER KALININ
(Imperial College)
Abstract

By viewing a stochastic process as a random variable taking values in a path space, the support of its law describes the set of all attainable paths. In this talk, we show that the support of the law of a solution to a path-dependent stochastic differential equation is given by the image of the Cameron-Martin space under the flow of mild solutions to path-dependent ordinary differential equations, constructed by means of the vertical derivative of the diffusion coefficient. This result is based on joint work with Rama Cont and extends the Stroock-Varadhan support theorem for diffusion processes to the path-dependent case.

Mon, 25 Feb 2019

15:45 - 16:45
L3

Reinforcement and random media

XIAOLIN ZENG
(University of Strasbourg)
Abstract

Abstract: The edge reinforced random walk is a self-interacting process, in which the random walker prefer visited edges with a bias proportional to the number of times the edges were visited. We will gently introduce this model and talk about some of its histories and recent progresses.

 

Mon, 25 Feb 2019

14:15 - 15:15
L3

Angles of Random Polytopes

DMITRY ZAPOROZHETS
(St. Petersburg University)
Abstract

We will consider some problems on calculating  the average  angles of random polytopes. Some of them are open.

Mon, 18 Feb 2019

15:45 - 16:45
L3

The branching-ruin number, the once-reinforced random walk, and other results

DANIEL KIOUS
(University of Bath)
Abstract

In a joint-work with Andrea Collevecchio and Vladas Sidoravicius,  we study  phase transitions in the recurrence/transience of a class of self-interacting random walks on trees, which includes the once-reinforced random walk. For this purpose, we define the branching-ruin number of a tree, which is  a natural way to measure trees with polynomial growth and therefore provides a polynomial version of the branching number defined by Furstenberg (1970) and studied by R. Lyons (1990). We prove that the branching-ruin number of a tree is equal to the critical parameter for the recurrence/transience of the once-reinforced random walk on this tree. We will also mention two other results where the branching-ruin number arises as critical parameter: first, in the context of random walks on heavy-tailed random conductances on trees and, second, in the case of Volkov's M-digging random walk.

Mon, 18 Feb 2019

14:15 - 15:15
L3

Cut off phenomenon for the weakly asymmetric simple exclusion process

CYRIL LABBE
(Ceremade Dauphin)
Abstract

Consider the asymmetric simple exclusion process with k particles on a linear lattice of N sites. I will present results on the asymptotic of the time needed for the system to reach its equilibrium distribution starting from the worst initial configuration (also called mixing time). Two main regimes appear according to the strength of the asymmetry (in terms of k and N), and in both regimes, the system displays a cutoff phenomenon: the distance to equilibrium falls abruptly from 1 to 0. This is a joint work with Hubert Lacoin (IMPA).

 

 

Mon, 11 Feb 2019

15:45 - 16:45
L3

Small time asymptotics for Brownian motion with singular drift

TUSHENG ZHANG
(Manchester University)
Abstract

We consider Brownian motion with Kato class measure-valued drift.   A small time large deviation principle and a Varadhan type asymptotics for the Brownian motion with singular drift are established. We also study the existence and uniqueness of the associated Dirichlet boundary value problems.

Mon, 11 Feb 2019

14:15 - 15:15
L3

'Semilinear PDE and hydrodynamic limits of particle systems on fractals'

MICHAEL HINZ
(University Bielefeld)
Abstract

We first give a short introduction to analysis and stochastic processes on fractal state spaces and the typical difficulties involved.

We then discuss gradient operators and semilinear PDE. They are used to formulate the main result which establishes the hydrodynamic limit of the weakly asymmetric exclusion process on the Sierpinski gasket in the form of a law of large numbers for the particle density. We will explain some details and, if time permits, also sketch a corresponding large deviations principle for the symmetric case.

Mon, 04 Feb 2019

15:45 - 16:45
L3

The parabolic Anderson model in 2 d, mass- and eigenvalue asymptotics

WILLEM VAN ZUIJLEN
(WIAS Berlin)
Abstract


In this talk I present work in progress with Wolfgang König and Nicolas Perkowski on the parabolic Anderson model (PAM) with white noise potential in 2d. We show the behavior of the total mass as the time tends to infinity. By using partial Girsanov transform and singular heat kernel estimates we can obtain the mass-asymptotics by using the eigenvalue asymptotics that have been showed in another work in progress with Khalil Chouk. 

Mon, 04 Feb 2019

14:15 - 15:15
L3

Space-time localisation for the dynamic $\Phi^4_3$ model

HENDRIK WEBER
(University of Bath)
Abstract

We prove an a priori bound for solutions of the dynamic $\Phi^4_3$ equation.

This bound provides a control on solutions on a compact space-time set only in terms of the realisation of the noise on an enlargement of this set, and it does not depend on any choice of space-time boundary conditions.

We treat the  large and small scale behaviour of solutions with completely different arguments.For small scales we use bounds akin to those presented in Hairer's theory of regularity structures. We stress immediately that our proof is fully self-contained, but we give a detailed explanation of how our arguments relate to Hairer's. For large scales we use a PDE argument based on the maximum principle. Both regimes are connected by a solution-dependent regularisation procedure.

The fact that our bounds do not depend on space-time boundary conditions makes them useful for the analysis of large scale properties of solutions. They can for example be used in a compactness argument to construct solutions on the full space and their invariant measures

Mon, 28 Jan 2019

15:45 - 16:45
L3

A geometric perspective on regularity structures

YOUNESS BOUTAIB
(BERLIN UNIVERSITY)
Abstract

Abstract: We use groupoids to describe a geometric framework which can host a generalisation of Hairer's regularity structures to manifolds. In this setup, Hairer's re-expansionmap (usually denoted \Gamma) is a (direct) connection on a gauge groupoid and can therefore be viewed as a groupoid counterpart of a (local) gauge field. This definitions enables us to make the link between re-expansion maps (direct connections), principal connections and path connections, to understand the flatness of the direct connection in terms of that of the manifold and, finally, to easily build a polynomial regularity structure which we compare to the one given by Driver, Diehl and Dahlquist. (Join work with Sara Azzali, Alessandra Frabetti and Sylvie Paycha).

Mon, 28 Jan 2019

14:15 - 15:15
L3

Recent progress in 2-dimensional quantum Yang-Mills theory

THIERRY LEVY
(Paris)
Abstract

Quantum Yang-Mills theory is an important part of the Standard model built by physicists to describe elementary particles and their interactions. One approach to the mathematical substance of this theory consists in constructing a probability measure on an infinite-dimensional space of connections on a principal bundle over space-time. However, in the physically realistic 4-dimensional situation, the construction of this measure is still an open mathematical problem. The subject of this talk will be the physically less realistic 2-dimensional situation, in which the construction of the measure is possible, and fairly well understood.

In probabilistic terms, the 2-dimensional Yang-Mills measure is the distribution of a stochastic process with values in a compact Lie group (for example the unitary group U(N)) indexed by the set of continuous closed curves with finite length on a compact surface (for example a disk, a sphere or a torus) on which one can measure areas. It can be seen as a Brownian motion (or a Brownian bridge) on the chosen compact Lie group indexed by closed curves, the role of time being played in a sense by area.

In this talk, I will describe the physical context in which the Yang-Mills measure is constructed, and describe it without assuming any prior familiarity with the subject. I will then present a set of results obtained in the last few years by Antoine Dahlqvist, Bruce Driver, Franck Gabriel, Brian Hall, Todd Kemp, James Norris and myself concerning the limit as N tends to infinity of the Yang-Mills measure constructed with the unitary group U(N). 

 

Mon, 14 Jan 2019

15:45 - 16:45
L3

Nonparametric pricing and hedging with signatures

IMANOL PEREZ
(University of Oxford)
Abstract

We address the problem of pricing and hedging general exotic derivatives. We study this problem in the scenario when one has access to limited price data of other exotic derivatives. In this presentation I explore a nonparametric approach to pricing exotic payoffs using market prices of other exotic derivatives using signatures.

 

Mon, 14 Jan 2019

14:15 - 15:15
L3

On the topology of level sets of Gaussian fields

ALEJANDRO RIVERA
(University of Grenoble-Alpes)
Abstract

Abstract: Consider a gaussian field f on R^2 and a level l. One can define a random coloring of the plane by coloring a point x in black if f(x)>-l and in white otherwise. The topology of this coloring is interesting in many respects. One can study the "small scale" topology by counting connected components with fixed topology, or study the "large scale" topology by considering black crossings of large rectangles. I will present results involving these quantities.

 

Mon, 26 Nov 2018

15:45 - 16:45
L3

Stochastic Euler-Lagrangian condition in semi-martingale optimal transport

LIU CHONG
(ETH Zurich)
Abstract

In semimartingale optimal transport problem, the functional to be minimized can be considered as a “stochastic action”, which is the expectationof a “stochastic Lagrangian” in terms of differential semimartingale characteristics. Therefore it would be natural to apply variational calculus approach to characterize the minimizers. R. Lassalle and A.B. Cruzeiro have used this approach to establish a stochastic Euler-Lagrangian condition for semimartingale optimal transport by perturbing the drift terms. Motivated by their work, we want to perform the same type of calculus for martingale optimal transport problem. In particular, instead of only considering perturbations in the drift terms, we try to find a nice variational family for volatility,and then obtain the stochastic Euler-Lagrangian condition for martingale laws. In the first part of this talk we will mention some basic results regarding the existence of minimizers in semimartingale optimal transport problem. In the second part, we will introduce Lassalle and Cruzeiro’s  work, and give a simple example related to this topic, where the variational family is induced by time-changes; and then we will introduce some potential problems that are needed to be solved.

Mon, 26 Nov 2018

14:15 - 15:15
L3

Quenched CLT for random walk in divergence-free random drift field

BALINT TOTH
(Bristol University)
Abstract

We prove the quenched version of the central limit theorem for the displacement of a random walk in doubly stochastic random environment, under the $H_{-1}$-condition, with slightly stronger,  $L^{2+\epsilon}$ (rather than $L^2$) integrability condition on the stream tensor. On the way we extend Nash's moment bound to the non-reversible, divergence-free drift case.  

 

Mon, 19 Nov 2018

15:45 - 16:45
L3

Fast-slow systems driven by slowly mixing deterministic dynamics.

ALEXEY KOREPANOV
(University of Warwick)
Abstract

I will talk about R^n valued random processes driven by a "noise", which is generated by a deterministic dynamical system, randomness coming from the choice of the initial condition.

Such processes were considered by D.Kelly and I.Melbourne.I will present our joint work with I.Chevyrev, P.Friz, I.Melbourne and H.Zhang, where we consider the noise with long term memory. We prove convergence to solution of a stochastic differential equation which is, depending on the noise, driven by either a Brownian motion (optimizing the assumptions of Kelly-Melbourne) or a Lévy process.Our work is made possible by recent progress in rough path theory for càdlàg paths in p-variation topology.

 

Mon, 19 Nov 2018

14:15 - 15:15
L3

Hedging derivatives under market frictions using deep learning techniques

LUKAS GONON
((ETH) Zurich)
Abstract

We consider the problem of optimally hedging a portfolio of derivatives in a scenario based discrete-time market with transaction costs. Risk-preferences are specified in terms of a convex risk-measure. Such a framework has suffered from numerical intractability up until recently, but this has changed thanks to technological advances: using hedging strategies built from neural networks and machine learning optimization techniques, optimal hedging strategies can be approximated efficiently, as shown by the numerical study and some theoretical results presented in this talk (based on joint work with Hans Bühler, Ben Wood and Josef Teichmann).

Mon, 12 Nov 2018

15:45 - 16:45
L3

The non-linear sewing lemma and Rough Differential Equations

ANTOINE LEJAY
(University of Lorraine)
Abstract

Solutions to Rough Differential Equations (RDE) may be constructed by several means. Beyond the fixed point argument, several approaches rely on using approximations of solutions over short times (Davie, Friz & Victoir, Bailleul, ...). In this talk, we present a generic, unifying framework to consider approximations of flows, called almost flows, and flows through the non-linear sewing lemma. This framework unifies the approaches mentioned above and decouples the analytical part from the algebraic part (manipulation of iterated integrals) when studying RDE. Beyond this, flows are objects with their own properties.New results, such as existence of measurable flows when several solutions of the corresponding RDE exist, will also be presented.

From a joint work with Antoine Brault (U. Toulouse III, France).

 

Mon, 12 Nov 2018

14:15 - 15:15
L3

A new Universality Class in (1+1)-dimensions: the Brownian Castle

GUISEPPE CANNIZZARO
(Imperial College London)
Abstract

In the context of randomly fluctuating surfaces in (1+1)-dimensions two Universality Classes have generally been considered, the Kardar-Parisi-Zhang and the Edwards-Wilkinson. Models within these classes exhibit universal fluctuations under 1:2:3 and 1:2:4 scaling respectively. Starting from a modification of the classical Ballistic Deposition model we will show that this picture is not exhaustive and another Universality Class, whose scaling exponents are 1:1:2, has to be taken into account. We will describe how it arises, briefly discuss its connections to KPZ and introduce a new stochastic process, the Brownian Castle, deeply connected to the Brownian Web, which should capture the large-scale behaviour of models within this Class. 

 

Mon, 05 Nov 2018

15:45 - 16:45
L3

Anomalous diffusion in deterministic Lorentz gases

IAN MELBOURNE
(University of Warwick)
Abstract

The classical Lorentz gas model introduced by Lorentz in 1905, studied further by Sinai in the 1960s, provides a rich source of examples of chaotic dynamical systems with strong stochastic properties (despite being entirely deterministic).  Central limit theorems and convergence to Brownian motion are well understood, both with standard n^{1/2} and nonstandard (n log n)^{1/2} diffusion rates.

In joint work with Paulo Varandas, we discuss examples with diffusion rate n^{1/a}, 1<a<2, and prove convergence to an a-stable Levy process.  This includes to the best of our knowledge the first natural examples where the M_2 Skorokhod topology is the appropriate one.



 

Mon, 05 Nov 2018

14:15 - 15:15
L3

From Monge Transports to Skorokhod Embeddings

NASSIF GHOUSSOUB
(University of British Colombia)
Abstract

I will consider cost minimizing stopping time solutions to Skorokhod embedding problems, which deal with transporting a source probability measure to a given target measure through a stopped Brownian process. A PDE (free boundary problem) approach is used to address the problem in general dimensions with space-time inhomogeneous costs given by Lagrangian integrals along the paths.  An Eulerian---mass flow---formulation of the problem is introduced. Its dual is given by Hamilton-Jacobi-Bellman type variational inequalities.  Our key result is the existence (in a Sobolev class) of optimizers for this new dual problem, which in turn determines a free boundary, where the optimal Skorokhod transport drops the mass in space-time. This complements and provides a constructive PDE alternative to recent results of Beiglb\"ock, Cox, and Huesmann, and is a first step towards developing a general optimal mass transport theory involving mean field interactions and noise.

Mon, 29 Oct 2018

15:45 - 16:45
L3

A support theorem for SLE curves

HUY TRAN
(TU Berlin)
Abstract

SLE curves are an important family of random curves in the plane. They share many similarites with solutions of SDE (in particular, with Brownian motion). Any quesion asked for the latter can be asked for the former. Inspired by that, Yizheng Yuan and I investigate the support for SLE curves. In this talk, I will explain our theorem with more motivation and idea. 

 

 

Mon, 29 Oct 2018

14:15 - 15:15
L3

Extensions of the sewing lemma to Multi-parameter Holder fields

FABIAN ANDSEM HARANG
(University of Oslo)
Abstract

In this seminar we will look at an extension of the well known sewing lemma from rough path theory to fields on [0; 1]k. We will first introduce a framework suitable to study such fields, and then find a criterion for convergence of multiple Riemann type sums of a class of abstract integrands. A simple application of this extension is construct the Young integral for fields.Furthermore, we will discuss the use of this theorem to study integration of fields of lower regularity by using ideas familiar from rough path theory. Moreover, we will discuss difficulties we face by looking at “multi-parameter ODE's” both from an existence and uniqueness point of view.