Past Topology Seminar

Masato Mimura

The problem of "unbounded rank expanders" asks 
whether we can endow a system of generators with a sequence of 
special linear groups whose degrees tend to infinity over quotient rings 
of Z such that the resulting Cayley graphs form an expander family.
Kassabov answered this question in the affirmative. Furthermore, the 
completely satisfactory solution to this question was given by 
Ershov and Jaikin--Zapirain (Invent. Math., 2010);  they proved
Kazhdan's property (T) for elementary groups over non-commutative 
rings. (T) is equivalent to the fixed point property with respect to 
actions on Hilbert spaces by isometries.

We provide a new framework to "upgrade" relative fixed point 
properties for small subgroups to the fixed point property for the 
whole group. It is inspired by work of Shalom (ICM, 2006). Our 
main criterion is stated only in terms of intrinsic group structure 
(but *without* employing any form of bounded generation). 
This, in particular, supplies a simpler (but not quantitative) 
alternative proof of the aforementioned result of Ershov and 

If time permits, we will discuss other applications of our result.

14 May 2018

 I will discuss the quantum-field-theory origins of a classic result of Goresky-Kottwitz-MacPherson concerning the Koszul duality between the homology of G and the G-equivariant cohomology of a point. The physical narrative starts from an analysis of supersymmetric quantum mechanics with G symmetry, and leads naturally to a definition of the category of boundary conditions in two-dimensional topological gauge theory, which might be called the "G-equivariant Fukaya category of a point." This simple example illustrates a more general phenomenon (also appearing in C. Teleman's work in recent years) that pure gauge theory in d dimensions seems to control the structure of G-actions in (d-1)-dimensional QFT. This is part of joint work with C. Beem, D. Ben Zvi, M. Bullimore, and A. Neitzke.

14 May 2018
Georges Skandalis

My talk is based on joint work with Claire Debord (Univ. Auvergne).
We will explain why Lie groupoids are very naturally linked to Atiyah-Singer index theory.
In our approach -originating from ideas of Connes, various examples of Lie groupoids
- allow to generalize index problems,
- can be used to construct the index of pseudodifferential operators without using the pseudodifferential calculus,
- give rise to proofs of index theorems, 
- can be used to construct the pseudodifferential calculus.

7 May 2018
Benjamin J. Barrett

When studying a group, it is natural and often useful to try to cut it up 
onto simpler pieces. Sometimes this can be done in an entirely canonical 
way analogous to the JSJ decomposition of a 3-manifold, in which the 
collection of tori along which the manifold is cut is unique up to isotopy. 
It is a theorem of Brian Bowditch that if the group acts nicely on a metric 
space with a negative curvature property then a canonical decomposition can 
be read directly from the large-scale geometry of that space. In this talk 
we shall explore an algorithmic consequence of this relationship between 
the large-scale geometry of the group and is algebraic decomposition.

30 April 2018
Paolo Ghiggini

I will prove that the knot Floer homology group
HFK-hat(K, g-1) for a genus g fibered knot K is isomorphic to a
variant of the fixed points Floer homology of an area-preserving
representative of its monodromy. This is a joint work with Gilberto

23 April 2018
Remi Coulon

(joint work with Françoise Dal'Bo and Andrea Sambusetti)

Given a finitely generated group G acting properly on a metric space X, the exponential growth rate of G with respect to X measures "how big" the orbits of G are. If H is a subgroup of G, its exponential growth rate is bounded above by the one of G. In this work we are interested in the following question: what can we say if H and G have the same exponential growth rate? This problem has both a combinatorial and a geometric origin. For the combinatorial part, Grigorchuck and Cohen proved in the 80's that a group Q = F/N (written as a quotient of the free group) is amenable if and only if N and F have the same exponential growth rate (with respect to the word length). About the same time, Brooks gave a geometric interpretation of Kesten's amenability criterion in terms of the bottom of the spectrum of the Laplace operator. He obtained in this way a statement analogue to the one of Grigorchuck and Cohen for the deck automorphism group of the cover of certain compact hyperbolic manifolds. These works initiated many fruitful developments in geometry, dynamics and group theory. We focus here one the class of Gromov hyperbolic groups and propose a framework that encompasses both the combinatorial and the geometric point of view. More precisely we prove that if G is a hyperbolic group acting properly co-compactly on a metric space X which is either a Cayley graph of G or a CAT(-1) space, then the growth rate of H and G coincide if and only if H is co-amenable in G.  In addition if G has Kazhdan property (T) we prove that there is a gap between the growth rate of G and the one of its infinite index subgroups.

11 April 2018
Howard Masur

An interval exchange transformation is a map  of an 
interval to 
itself that rearranges a finite number of intervals by translations.  They 
appear among other places in the 
subject of rational billiards and flows of translation surfaces. An 
interesting phenomenon is that an IET may have dense orbits that are not 
uniformly distributed, a property known as non unique ergodicity.  I will 
talk about this phenomenon and present some new results about how common 
this is. Joint work with Jon Chaika.

5 March 2018

A particle bouncing around inside a Euclidean polygon gives rise to a biinfinite "bounce sequence" (or "cutting sequence") recording the (labeled) sides encountered by the particle.  In this talk, I will describe recent work with Duchin, Erlandsson, and Sadanand, where we prove that the set of all bounce sequences---the "bounce spectrum"---essentially determines the shape of the polygon.  This is consequence of a technical result about Liouville currents associated to nonpositively curved Euclidean cone metrics on surfaces.  In the talk I will explain the objects mentioned above, how they relate to each other, and give some idea of how one determines the shape of the polygon from its bounce spectrum.

19 February 2018
Clark Barwick

It is a truth universally acknowledged, that a local system on a connected topological manifold is completely determined by its attached monodromy representation of the fundamental group. Similarly, lisse ℓ-adic sheaves on a connected variety determine and are determined by representations of the profinite étale fundamental group. Now if one wants to classify constructible sheaves by representations in a similar manner, new invariants arise. In the topological category, this is the exit path category of Robert MacPherson (and its elaborations by David Treumann and Jacob Lurie), and since these paths do not ‘run around once’ but ‘run out’, we coined the term exodromy representation. In the algebraic category, we define a profinite ∞-category – the étale fundamental ∞-category – whose representations determine and are determined by constructible (étale) sheaves. We describe the étale fundamental ∞-category and its connection to ramification theory, and we summarise joint work with Saul Glasman and Peter Haine.