The mapping class group of a surface is associated to its Teichmüller space. In turn, its boundary consists of projective measured laminations. Similarly, the group of outer automorphisms of a free group is associated to its Outer space. Now the boundary contains equivalence classes of arationaltrees as a subset. There exist distinct projective measured laminations that have the same underlying geodesic lamination, which is also minimal and filling. Such geodesic laminations are called `non-uniquely ergodic'. I will talk briefly about laminations on surfaces and then present a construction of non-uniquely ergodic phenomenon for arational trees. This is joint work with Mladen Bestvina and Jing Tao.

# Past Topology Seminar

We will first construct pairs of homotopic 2-spheres smoothly embedded in a 4-manifold that are smoothly equivalent (via an ambient diffeomorphism preserving homology) but not even topologically isotopic. Indeed, these examples show that Gabai's recent "4D Lightbulb Theorem" does not hold without the 2-torsion hypothesis. We will proceed to discuss two distinct ways of obstructing such an isotopy, as well as related invariants which can be used to obstruct an isotopy between pairs of properly embedded disks (rather than spheres) in a 4-manifold.

The square peg problem asks whether every Jordan curve in the

plane contains the vertices of a square. Inspired by Hugelmeyer's approach

for smooth curves, we give a topological proof for "locally 1-Lipschitz"

curves using 4-dimensional topology.

Given two metric spaces $X$ and $Y$, it is natural to ask how faithfully, from the point of view of the metric, one can embed $X$ into $Y$. One way of making this precise is asking whether there exists a coarse embedding of $X$ into $Y$. Positive results are plentiful and diverse, from Assouad's embedding theorem for doubling metric spaces to the elementary fact that any finitely generated subgroup of a finitely generated group is coarsely embedded with respect to word metrics. Moreover, the consequences of admitting a coarse embedding into a sufficiently nice space can be very strong. By contrast, there are few invariants which provide obstructions to coarse embeddings, leaving many seemingly elementary geometric questions open.

I will present new families of invariants which resolve some of these questions. Highlights of the talk include a new algebraic dichotomy for connected unimodular Lie groups, and a method of calculating a lower bound on the conformal dimension of a compact Ahlfors-regular metric space.

Witten-Reshetikhin-Turaev quantum invariants of links and 3 dimensional manifolds are obtained from quantum sl(2). There exist different versions of quantum sl(2) leading to other families of invariants. We will briefly overview the original construction and then discuss two variants. First one, so called unrolled quantum sl(2), allows construction of invariants of 3-manifolds involving C* flat connections. In simplest case it recovers Reidemeister torsion. The second one is the non restricted version at a root of unity. It enables construction of invariants of links equipped with a gauge class of SL(2,C) flat connection. This is based respectively on joined work with Costantino, Geer, Patureau and Geer, Patureau, Reshetikhin.

The genus of a knot in a 3-manifold is defined to be the minimum genus of a compact, orientable surface bounding that knot, if such a surface exists. We consider the computational complexity of determining knot genus. Such problems have been studied by several mathematicians; among them are the works of Hass--Lagarias--Pippenger, Agol--Hass--Thurston, Agol and Lackenby. For a fixed 3-manifold the knot genus problem asks, given a knot K and an integer g, whether the genus of K is equal to g. In joint work with Lackenby, we prove that for any fixed, compact, orientable 3-manifold, the knot genus problem lies inNP, answering a question of Agol--Hass--Thurston from 2002. Previously this was known for rational homology 3-spheres by the work of Lackenby.

A broad challenge in the theory of finitely generated groups is to understand their subgroups. A group is commensurably coHopfian if its finite index subgroups are distinct from its infinite index subgroups (that is to say not abstractly isomorphic). We will focus primarily on hyperbolic groups, and give the first examples of one-ended hyperbolic groups that are not commensurably coHopfian.

This is joint work with Emily Stark.

In this talk we will survey a novel domain of computational group theory: computing with linear groups over infinite fields. We will provide an introduction to the area, and will discuss available methods and algorithms. Special consideration is given to algorithms for Zariski dense subgroups. This includes a computer realization of the strong approximation theorem, and algorithms for arithmetic groups. We illustrate applications of our methods to the solution of problems further afield by computer experimentation.

We construct a cellular decomposition of the

Axelrod-Singer-Fulton-MacPherson compactification of the configuration

spaces in the plane, that is compatible with the operad composition.

Cells are indexed by trees with bi-coloured edges, and vertices are labelled by

cells of the cacti operad. This answers positively a conjecture stated in

2000 by Kontsevich and Soibelman.