I will explain how Lurie‘s approach to L-theory via Poincaré categories can be extended to yield cobordism categories of Poincaré objects à la Ranicki. These categories can be delooped by an iterated Q-construction and the resulting spectrum is a derived version of Grothendieck-Witt-theory. Its homotopy type can be described in terms of K- and L-theory as conjectured by Hesselholt-Madsen. Furthermore, it has a clean universal property analogous to that of K-theory, localisation sequences in much greater generality than classical Grothendieck-Witt theory, gives a cycle description of Weiss-Williams‘ LA-theory and allows for maps from the geometric cobordism category, refining and unifying various known invariants.

All original material is joint work with B.Calmès, E.Dotto, Y.Harpaz, M.Land, K.Moi, D.Nardin, T.Nikolaus and W.Steimle.

# Past Topology Seminar

The large-scale features of groups and spaces are recorded by asymptotic invariants. Examples of asymptotic invariants are the asymptotic cone and, for hyperbolic groups, the Gromov boundary.

In his study of asymptotic cones of connected Lie groups, Yves Cornulier introduced a class of maps called sublinearly biLipschitz equivalences. Like the more traditionnal quasiisometries, sublinearly biLipschitz equivalences are biLipschitz on the large-scale, but unlike quasiisometries, they are generally not coarse. Sublinearly biLipschitz equivalences still induce biLipschitz homeomorphisms between asymptotic cones. In this talk, I will focus on Gromov-hyperbolic groups and show how the Gromov boundary can be used to produce invariants distinguishing them up to sublinearly biLipschitz equivalences when the asymptotic cones do not. I will especially give applications to the large-scale sublinear geometry of hyperbolic Lie groups.

The concept of an acylindrically hyperbolic group, introduced by D. Osin, generalizes hyperbolic and relatively hyperbolic groups, and includes many other groups of interest: Out(F_n), n>1, most mapping class groups, directly indecomposable non-cyclic right angled Artin groups, most graph products, groups of deficiency at least 2, etc. Roughly speaking, a group G is acylindrically hyperbolic if there is a (possibly infinite) generating set X of G such that the Cayley graph \Gamma(G,X) is hyperbolic and the action of G on it is "sufficiently nice". Many global properties of hyperbolic/relatively hyperbolic groups have been also proved for acylindrically hyperbolic groups.

In the talk I will discuss a method which allows to construct a common acylindrically hyperbolic quotient for any countable family of countable acylindrically hyperbolic groups. This allows us to produce acylindrically hyperbolic groups with many unexpected properties.(The talk will be based on joint work with Denis Osin.)

In the late seventies, Casson and Gordon developed several knot invariants that obstruct a knot from being slice, i.e. from bounding a disc in the 4-ball. In this talk, we use twisted Blanchfield pairings to define twisted generalisations of the Levine-Tristram signature function, and describe their relation to the Casson-Gordon invariants. If time permits, we will present some obstructions to algebraic knots being slice. This is joint work with Maciej Borodzik and Wojciech Politarczyk.

I will discuss Agol's proof of the Virtually Fibred Conjecture of

Thurston, focusing on the role played by the `RFRS' property. I will

then show how one can modify parts of Agol's proof by replacing some

topological considerations with a group theoretic statement about

virtual fibring of RFRS groups.

In a joint work with Matt Tointon, we study the fine structure of approximate groups. We deduce various applications on growth, isoperimetry and quantitative estimates for the the simple random walk on finite vertex transitive graphs.

A conjecture from the '80s claims that the isometry type of a closed, negatively curved Riemannian manifold should be uniquely determined by the lengths of its closed geodesics. By work of Otal, this is essentially equivalent to the problem of extending cross-ratio preserving maps between Gromov boundaries of simply connected, negatively curved manifolds. Progress on the conjecture has been remarkably slow, with only the 2-dimensional and locally symmetric cases having been solved so far (Otal '90 and Hamenstädt '99).

Still, it is natural to try leaving the world of manifolds and address the conjecture in the general context of non-positively curved metric spaces. We restrict to the class of CAT(0) cube complexes, as their geometry is both rich and well-understood. We introduce a new notion of cross ratio on their horoboundary and use it to provide a full answer to the conjecture in this setting. More precisely, we show that essential, hyperplane-essential cubulations of Gromov-hyperbolic groups are completely determined by their combinatorial length functions. One can also consider non-proper non-cocompact actions of non-hyperbolic groups, as long as the cube complexes are irreducible and have no free faces.

Joint work with J. Beyrer and M. Incerti-Medici.

Stable commutator length (scl) is a well established invariant of elements g in the commutator subgroup (write scl(g)) and has both geometric and algebraic meaning. A group has a \emph{gap} in stable commutator length if for every non-trivial element g, scl(g) > C for some C > 0.

SCL may be interpreted as an 'algebraic translation length' and such a gap may be thus interpreted an 'algebraic injectivity radius'.

Many classes of groups have such a gap, like hyperbolic groups, mapping class groups, Baumslag-Solitar groups and graph of groups.

In this talk I will show that Right-Angled Artin Groups have the optimal scl-gap of 1/2. This yields a new invariant for the vast class of subgroups of Right-Angled Artin Groups.

Symmetric spaces and lattices are important objects to model spaces in geometry and topology. They have been studied from many different viewpoints. We will concentrate on their coarse geometry view point in this talk. I will first quickly go over some well-known results about quasi-isometry of those spaces. Then I will move to the study about quasi-isometric embeddings. While results in this direction are far less complete and well-studied, there are some rigidity phenomenons still happening here.

In his famous book on partial differential relations Gromov formulates an exercise concerning local deformations of solutions to open partial differential relations. We will explain the content of this fundamental assertion and sketch a proof.

In the sequel we will apply this to extend local deformations of closed $G_2$ structures, and to construct

$C^{1,1}$-Riemannian metrics which are positively curved "almost everywhere" on arbitrary manifolds.

This is joint work with Christian Bär (Potsdam).