Past Topology Seminar

E.g., 2020-02-21
E.g., 2020-02-21
E.g., 2020-02-21
17 February 2020
15:45
David Hume
Abstract


Given two metric spaces $X$ and $Y$, it is natural to ask how faithfully, from the point of view of the metric, one can embed $X$ into $Y$. One way of making this precise is asking whether there exists a coarse embedding of $X$ into $Y$. Positive results are plentiful and diverse, from Assouad's embedding theorem for doubling metric spaces to the elementary fact that any finitely generated subgroup of a finitely generated group is coarsely embedded with respect to word metrics. Moreover, the consequences of admitting a coarse embedding into a sufficiently nice space can be very strong. By contrast, there are few invariants which provide obstructions to coarse embeddings, leaving many seemingly elementary geometric questions open.
I will present new families of invariants which resolve some of these questions. Highlights of the talk include a new algebraic dichotomy for connected unimodular Lie groups, and a method of calculating a lower bound on the conformal dimension of a compact Ahlfors-regular metric space.
 

10 February 2020
15:45
Abstract

Witten-Reshetikhin-Turaev quantum invariants of links and 3 dimensional manifolds are obtained from quantum sl(2). There exist different versions of quantum sl(2) leading to other families of invariants. We will briefly overview the original construction and then discuss two variants. First one, so called unrolled quantum sl(2), allows construction of invariants of 3-manifolds involving C* flat connections. In simplest case it recovers Reidemeister torsion. The second one is the non restricted version at a root of unity. It enables construction of invariants of links equipped with a gauge class of SL(2,C) flat connection. This is based respectively on joined work with Costantino, Geer, Patureau and Geer, Patureau, Reshetikhin.

3 February 2020
15:45
Mehdi Yazdi
Abstract

The genus of a knot in a 3-manifold is defined to be the minimum genus of a compact, orientable surface bounding that knot, if such a surface exists. We consider the computational complexity of determining knot genus. Such problems have been studied by several mathematicians; among them are the works of Hass--Lagarias--Pippenger, Agol--Hass--Thurston, Agol and Lackenby. For a fixed 3-manifold the knot genus problem asks, given a knot K and an integer g, whether the genus of K is equal to g. In joint work with Lackenby, we prove that for any fixed, compact, orientable 3-manifold, the knot genus problem lies inNP, answering a question of Agol--Hass--Thurston from 2002. Previously this was known for rational homology 3-spheres by the work of Lackenby.

 

27 January 2020
15:45
Daniel Woodhouse
Abstract


A broad challenge in the theory of finitely generated groups is to understand their subgroups. A group is commensurably coHopfian if its finite index subgroups are distinct from its infinite index subgroups (that is to say not abstractly isomorphic). We will focus primarily on hyperbolic groups, and give the first examples of one-ended hyperbolic groups that are not commensurably coHopfian.
This is joint work with Emily Stark.
 

20 January 2020
15:45
Abstract

In this talk we will survey a novel domain of computational group theory: computing with linear groups over infinite fields.  We will provide an introduction to the area, and will discuss available methods and algorithms. Special consideration is given to algorithms for Zariski dense subgroups. This includes a computer realization of the strong approximation theorem, and algorithms for arithmetic groups. We illustrate applications of our methods to the solution of problems further afield by computer experimentation.

2 December 2019
15:45
Abstract

We construct a cellular decomposition of the
Axelrod-Singer-Fulton-MacPherson compactification of the configuration
spaces in the plane, that is compatible with the operad composition.
Cells are indexed by trees with bi-coloured edges, and vertices are labelled by 
cells of the cacti operad. This answers positively a conjecture stated in 
2000 by Kontsevich and Soibelman.

25 November 2019
15:45
Ivan Smith
Abstract

The homological monodromy of the universal family of cubic threefolds defines a representation of a certain Artin-type group into the symplectic group Sp(10;\Z). We use Thurston’s classification of surface automorphisms to prove this does not factor through the genus five mapping class group.  This gives a geometric group theory perspective on the well-known irrationality of cubic threefolds, as established by Clemens and Griffiths.
 

18 November 2019
15:45
Abstract

The smooth mapping class group of the 4-sphere is pi_0 of the space of orientation preserving self-diffeomorphisms of S^4. At the moment we have no idea whether this group is trivial or not. Watanabe has shown that higher homotopy groups can be nontrivial. Inspired by Watanabe's constructions, we'll look for interesting self-diffeomorphisms of S^4. Most of the talk will be an outline for a program to find a nice geometric generating set for this mapping class group; a few small steps in the program are actually theorems. The point of finding generators is that if they are explicit enough then you have a hope of either showing that they are all trivial or finding an invariant that is well adapted to obstructing triviality of these generators.

11 November 2019
15:45
Emanuele Dotto
Abstract

We will introduce the Witt vectors of a ring with coefficients in a bimodule and use them to calculate the components of the Hill-Hopkins-Ravenel norm for cyclic p-groups. This algebraic construction generalizes Hesselholt's Witt vectors for non-commutative rings and Kaledin's polynomial Witt vectors over perfect fields. We will discuss applications to the characteristic polynomial over non-commutative rings and to the Dieudonné determinant. This is all joint work with Krause, Nikolaus and Patchkoria.

Pages