Forthcoming events in this series


Mon, 04 Mar 2019
15:45
L6

Acylindrically hyperbolic groups with strong fixed point properties

Ashot Minasyan
(University of Southampton)
Abstract


The concept of an acylindrically hyperbolic group, introduced by D. Osin, generalizes hyperbolic and relatively hyperbolic groups, and includes many other groups of interest: Out(F_n), n>1, most mapping class groups, directly indecomposable non-cyclic right angled Artin groups, most graph products, groups of deficiency at least 2, etc. Roughly speaking, a group G is acylindrically hyperbolic if there is a (possibly infinite) generating set X of G such that the Cayley graph \Gamma(G,X) is hyperbolic and the action of G on it is "sufficiently nice". Many global properties of hyperbolic/relatively hyperbolic groups have been also proved for acylindrically hyperbolic groups. 
In the talk I will discuss a method which allows to construct a common acylindrically hyperbolic quotient for any countable family of countable acylindrically hyperbolic groups. This allows us to produce acylindrically hyperbolic groups with many unexpected properties.(The talk will be based on joint work with Denis Osin.)
 

Mon, 25 Feb 2019
15:45
L6

Twisted Blanchfield pairings and Casson-Gordon invariants

Anthony Conway
(Durham University)
Abstract

 In the late seventies, Casson and Gordon developed several knot invariants that obstruct a knot from being slice, i.e. from bounding a disc in the 4-ball. In this talk, we use twisted Blanchfield pairings to define twisted generalisations of the Levine-Tristram signature function, and describe their relation to the Casson-Gordon invariants. If time permits, we will present some obstructions to algebraic knots being slice. This is joint work with Maciej Borodzik and Wojciech Politarczyk.

Wed, 20 Feb 2019

17:00 - 18:00
C1

Virtual fibring of manifolds and groups

Dawid Kielak
Abstract

I will discuss Agol's proof of the Virtually Fibred Conjecture of
Thurston, focusing on the role played by the `RFRS' property. I will
then show how one can modify parts of Agol's proof by replacing some
topological considerations with a group theoretic statement about
virtual fibring of RFRS groups.
 

Mon, 18 Feb 2019
16:30
L1

Structure of approximate subgroups of nilpotent groups and applications

Romain Tessera
(University of Paris Sud)
Abstract

In a joint work with Matt Tointon, we study the fine structure of approximate groups. We deduce various applications on growth, isoperimetry and quantitative estimates for the the simple random walk on finite vertex transitive graphs.

Mon, 18 Feb 2019
15:30
L1

Cross ratios on cube complexes and length-spectrum rigidity

Elia Fioravanti
(Oxford)
Abstract

A conjecture from the '80s claims that the isometry type of a closed, negatively curved Riemannian manifold should be uniquely determined by the lengths of its closed geodesics. By work of Otal, this is essentially equivalent to the problem of extending cross-ratio preserving maps between Gromov boundaries of simply connected, negatively curved manifolds. Progress on the conjecture has been remarkably slow, with only the 2-dimensional and locally symmetric cases having been solved so far (Otal '90 and Hamenstädt '99).
Still, it is natural to try leaving the world of manifolds and address the conjecture in the general context of non-positively curved metric spaces. We restrict to the class of CAT(0) cube complexes, as their geometry is both rich and well-understood. We introduce a new notion of cross ratio on their horoboundary and use it to provide a full answer to the conjecture in this setting. More precisely, we show that essential, hyperplane-essential cubulations of Gromov-hyperbolic groups are completely determined by their combinatorial length functions. One can also consider non-proper non-cocompact actions of non-hyperbolic groups, as long as the cube complexes are irreducible and have no free faces.
Joint work with J. Beyrer and M. Incerti-Medici.

Mon, 18 Feb 2019
14:15
L1

RAAGs and Stable Commutator Length

Nicolaus Heuer
(Oxford)
Abstract

Stable commutator length (scl) is a well established invariant of elements g in the commutator subgroup (write scl(g)) and has both geometric and algebraic meaning.  A group has a \emph{gap} in stable commutator length if for every non-trivial element g, scl(g) > C for some C > 0.
SCL may be interpreted as an 'algebraic translation length' and such a gap may be thus interpreted an 'algebraic injectivity radius'.
Many classes of groups have such a gap, like hyperbolic groups, mapping class groups, Baumslag-Solitar groups and graph of groups.
In this talk I will show that Right-Angled Artin Groups have the optimal scl-gap of 1/2. This yields a new invariant for the vast class of subgroups of Right-Angled Artin Groups.

Mon, 18 Feb 2019
13:15
L1

Quasi-isometric embeddings of symmetric spaces and lattices

Thang Nguyen
(Courant Institute of Mathematical Sciences)
Abstract

Symmetric spaces and lattices are important objects to model spaces in geometry and topology. They have been studied from many different viewpoints. We will concentrate on their coarse geometry view point in this talk. I will first quickly go over some well-known results about quasi-isometry of those spaces. Then I will move to the study about quasi-isometric embeddings. While results in this direction are far less complete and well-studied, there are some rigidity phenomenons still happening here.

Mon, 11 Feb 2019
15:45
L6

Local flexibility for open partial differential relations

Bernhard Hanke
(University of Augsburg)
Abstract

In his famous book on partial differential relations Gromov formulates an exercise concerning local deformations of solutions to open partial differential relations. We will explain the content of this fundamental assertion and sketch a proof. 

In the sequel we will apply this to extend local deformations of closed $G_2$ structures, and to construct 
$C^{1,1}$-Riemannian metrics which are positively curved "almost everywhere" on arbitrary manifolds. 

This is joint work with Christian Bär (Potsdam).

Mon, 04 Feb 2019
15:45
L6

Slice discs in stabilized 4-balls

Matthias Nagel
(Oxford)
Abstract


We recall the impact of stabilizing a 4-manifold with $S^2 \times S^2$. The corresponding local situation concerns knots in the 3-sphere which bound (nullhomotopic) discs in a stabilized 4-ball. We explain how these discs arise, and discuss bounds on the minimal number of stabilizations needed. Then we compare this minimal number to the 4-genus.
This is joint work with A. Conway.

Mon, 28 Jan 2019
15:45
L6

Transfers and traces in the algebraic K-theory of spaces

George Raptis
(Regensburg)
Further Information

The algebraic K-theory of a space encodes important invariants of the space which are of interest in both homotopy theory and geometric topology. 

In this talk, I will discuss properties of transfer maps in the algebraic K-theory of spaces ('wrong-way' maps) in connection with index theorems for (smooth or topological) manifold bundles and also compare these maps with other related constructions such as the Becker-Gottlieb transfer and the Waldhausen trace.

Mon, 21 Jan 2019
15:45
L6

Dilation of formal groups, and potential applications

Neil Strickland
(University of Sheffield)
Abstract


I will describe an extremely easy construction with formal group laws, and a 
slightly more subtle argument to show that it can be done in a coordinate-free
way with formal groups.  I will then describe connections with a range of other
phenomena in stable homotopy theory, although I still have many more 
questions than answers about these.  In particular, this should illuminate the
relationship between the Lambda algebra and the Dyer-Lashof algebra at the
prime 2, and possibly suggest better ways to think about related things at 
odd primes.  The Morava K-theory of symmetric groups is well-understood
if we quotient out by transfers, but somewhat mysterious if we do not pass
to that quotient; there are some suggestions that dilation will again be a key
ingredient in resolving this.  The ring $MU_*(\Omega^2S^3)$ is another
object for which we have quite a lot of information but it seems likely that 
important ideas are missing; dilation may also be relevant here.
 

Mon, 14 Jan 2019
15:45
L6

Dimension series and homotopy groups of spheres

Laurent Bartholdi
(Goettingen)
Abstract


The lower central series of a group $G$ is defined by $\gamma_1=G$ and $\gamma_n = [G,\gamma_{n-1}]$. The "dimension series", introduced by Magnus, is defined using the group algebra over the integers: $\delta_n = \{g: g-1\text{ belongs to the $n$-th power of the augmentation ideal}\}$.

It has been, for the last 80 years, a fundamental problem of group theory to relate these two series. One always has $\delta_n\ge\gamma_n$, and a conjecture by Magnus, with false proofs by Cohn, Losey, etc., claims that they coincide; but Rips constructed an example with $\delta_4/\gamma_4$ cyclic of order 2. On the positive side, Sjogren showed that $\delta_n/\gamma_n$ is always a torsion group, of exponent bounded by a function of $n$. Furthermore, it was believed (and falsely proven by Gupta) that only $2$-torsion may occur.
In joint work with Roman Mikhailov, we prove however that for every prime $p$ there is a group with $p$-torsion in some quotient $\delta_n/\gamma_n$.
Even more interestingly, I will show that the dimension quotient $\delta_n/gamma_n$ is related to the difference between homotopy and homology: our construction is fundamentally based on the order-$p$ element in the homotopy group $\pi_{2p}(S^2)$ due to Serre.
 

Mon, 26 Nov 2018
17:00
L6

Lattices and correction terms

Kyle Larsson
(Alfréd Rényi Institute of Mathematics)
Abstract

 I will introduce two obstructions for a rational homology 3-sphere to smoothly bound a rational homology 4-ball- one coming from Donaldson's theorem on intersection forms of definite 4-manifolds, and the other coming from correction terms in Heegaard Floer homology. If L is a nonunimodular definite lattice, then using a theorem of Elkies we will show that whether L embeds in the standard definite lattice of the same rank is completely determined by a collection of lattice correction terms, one for each metabolizing subgroup of the discriminant group. As a topological application this gives a rephrasing of the obstruction coming from Donaldson's theorem. Furthermore, from this perspective it is easy to see that if the obstruction to bounding a rational homology ball coming from Heegaard Floer correction terms vanishes, then (under some mild hypotheses) the obstruction from Donaldson's theorem vanishes too.

Mon, 26 Nov 2018
15:45
L6

Orthogonal group and higher categorical adjoints

David Ayala
(Montana State University)
Abstract


In this talk I will articulate and contextualize the following sequence of results.

The Bruhat decomposition of the general linear group defines a stratification of the orthogonal group.
Matrix multiplication defines an algebra structure on its exit-path category in a certain Morita category of categories.  
In this Morita category, this algebra acts on the category of n-categories -- this action is given by adjoining adjoints to n-categories. 

This result is extracted from a larger program -- entirely joint with John Francis, some parts joint with Nick Rozenblyum -- which proves the cobordism hypothesis.  

Mon, 19 Nov 2018
15:45
L6

Random triangular Burnside groups

John Mackay
(University of Bristol)
Abstract

In this talk I will discuss recent joint work with Dominik Gruber where 
we find a reasonable model for random (infinite) Burnside groups, 
building on earlier tools developed by Coulon and Coulon-Gruber.

The free Burnside group with rank r and exponent n is defined to be the 
quotient of a free group of rank r by the normal subgroup generated by 
all elements of the form g^n; quotients of such groups are called 
Burnside groups.  In 1902, Burnside asked whether any such groups could 
be infinite, but it wasn't until the 1960s that Novikov and Adian showed 
that indeed this was the case for all large enough odd n, with later 
important developments by Ol'shanski, Ivanov, Lysenok and others.

In a different direction, when Gromov developed the theory of hyperbolic 
groups in the 1980s and 90s, he observed that random quotients of free 
groups have interesting properties: depending on exactly how one chooses 
the number and length of relations one can typically gets hyperbolic 
groups, and these groups are infinite as long as not too many relations 
are chosen, and exhibit other interesting behaviour.  But one could 
equally well consider what happens if one takes random quotients of 
other free objects, such as free Burnside groups, and that is what we 
will discuss.
 

Mon, 12 Nov 2018
15:45
L6

Geodesic Currents and Counting Curves

Viveka Erlandsson
(Bristol University)
Abstract

Two curves in a closed hyperbolic surface of genus g are of the same type if they differ by a mapping class. Mirzakhani studied the number of curves of given type and of hyperbolic length bounded by L, showing that as L grows, it is asymptotic to a constant times L^{6g-6}. In this talk I will discuss a generalization of this result, allowing for other notions of length. For example, the same asymptotics hold if we put any (singular) Riemannian metric on the surface. The main ingredient in this generalization is to study measures on the space of geodesic currents.

Mon, 05 Nov 2018
15:45
L6

Random graphs with constant r-balls

David Ellis
(Queen Mary University of London)
Abstract


Let F be a fixed infinite, vertex-transitive graph. We say a graph G is `r-locally F' if for every vertex v of G, the ball of radius r and centre v in G is isometric to the ball of radius r in F. For each positive integer n, let G_n = G_n(F,r) be a graph chosen uniformly at random from the set of all unlabelled, n-vertex graphs that are r-locally F. We investigate the properties that the random graph G_n has with high probability --- i.e., how these properties depend upon the fixed graph F. 
We show that if F is a Cayley graph of a torsion-free group of polynomial growth, then there exists a positive integer r_0 such that for every integer r at least r_0, with high probability the random graph G_n = G_n(F,r) defined above has largest component of size between n^{c_1} and n^{c_2}, where 0 < c_1 < c_2  < 1 are constants depending upon F alone, and moreover that G_n has at least exp(poly(n)) automorphisms. This contrasts sharply with the random d-regular graph G_n(d) (which corresponds to the case where F is replaced by the infinite d-regular tree).
Our proofs use a mixture of results and techniques from group theory, geometry and combinatorics, including a recent and beautiful `rigidity' result of De La Salle and Tessera.
We obtain somewhat more precise results in the case where F is L^d (the standard Cayley graph of Z^d): for example, we obtain quite precise estimates on the number of n-vertex graphs that are r-locally L^d, for r at least linear in d, using classical results of Bieberbach on crystallographic groups.
Many intriguing open problems remain: concerning groups with torsion, groups with faster than polynomial growth, and what happens for more general structures than graphs.
This is joint work with Itai Benjamini (Weizmann Institute).
 

Mon, 29 Oct 2018
15:45
L6

From PDEs to groups

Andrzej Zuk
(University Paris 7 and Imperial College)
Abstract

We present a construction which associates to a KdV equation the lamplighter group. 
In order to establish this relation we use automata and random walks on ultra discrete limits. 
It is also related to the L2 Betti numbers introduced by Atiyah which are homotopy 
invariants of closed manifolds.

Mon, 22 Oct 2018
15:45
L6

Directed algebraic topology

Lisbeth Fajstrup
(Aalborg University)
Abstract

In directed algebraic topology, a topological space is endowed 
with an extra structure, a selected subset of the paths called the 
directed paths or the d-structure. The subset has to contain the 
constant paths, be closed under concatenation and non-decreasing 
reparametrization. A space with a d-structure is a d-space.
If the space has a partial order, the paths increasing wrt. that order 
form a d-structure, but the circle with counter clockwise paths as the 
d-structure is a prominent example without an underlying partial order.
Dipaths are dihomotopic if there is a one-parameter family of directed 
paths connecting them. Since in general dipaths do not have inverses, 
instead of fundamental groups (or groupoids), there is a fundamental 
category. So already at this stage, the algebra is less desirable than 
for topological spaces.
We will give examples of what is currently known in the area, the kind 
of methods used and the problems and questions which need answering - in 
particular with applications in computer science in mind.
 

Mon, 15 Oct 2018
15:45
L6

Formal Moduli Problems via Partition Lie Algebras

Lukas Brantner
(Oxford University)
Abstract

If k is a field of characteristic zero, a theorem of Lurie and Pridham establishes an equivalence between formal moduli problems and differential graded Lie algebras over k. We generalise this equivalence in two different ways to arbitrary ground fields by using “partition Lie algebras”. These mysterious new gadgets are intimately related to the genuine equivariant topology of the partition complex, which allows us to access the operations acting on their homotopy groups (relying on earlier work of Dyer-Lashof, Priddy, Goerss, and Arone-B.). This is joint work with Mathew.

Mon, 08 Oct 2018
15:45
L6

The loop space homology of a small category

Robert Oliver
(University Paris 13)
Abstract


In an article published in 2009, Dave Benson described, for a finite group $G$, the mod $p$ homology of the space $\Omega(BG^\wedge_p)$ --- the loop space of the $p$-completion of $BG$ --- in purely algebraic terms. In joint work with Carles Broto and Ran Levi, we have tried to better understand Benson's result by generalizing it. We showed that when $\mathcal{C}$ is a small category, $|\mathcal{C}|$ is its geometric realization, $R$ is a commutative ring, and $|\mathcal{C}|^+_R$ is a plus construction of $|\mathcal{C}|$ with respect to homology with coefficients in $R$, then $H_*(\Omega(|\mathcal{C}|^+_R);R)$ is the homology any chain complex of projective $R\mathcal{C}$-modules that satisfies certain conditions. Benson's theorem is then the special case where $\mathcal{C}$ is the category associated to a finite group $G$ and $R=F_p$, so that $p$-completion is a special case of the plus construction.
 

Mon, 18 Jun 2018
15:45
L3

Semi-stability in Nonpositive curvature

Eric Swenson
(Brigham Young University)
Abstract

A proper simply connected one-ended metric space is call semi-stable if any two proper rays are properly homotopic.  A finitely presented group is called semi-stable if the universal cover of its presentation 2-complex is semi-stable.  
It is conjectured that every finitely presented group is semi-stable.  We will examine the known results for the cases where the group in question is relatively hyperbolic or CAT(0). 
 

Mon, 11 Jun 2018
15:45
L2

Moduli stacks of vacua in geometric representation theory

David Ben-Zvi
(University of Texas at Austin)
Abstract

Topological field theories give rise to a wealth of algebraic structures, extending
the E_n algebra expressing the "topological OPE of local operators". We may interpret these algebraic structures as defining (slightly noncommutative) algebraic varieties and stacks, called moduli stacks of vacua, and relations among them. I will discuss some examples of these structures coming from the geometric Langlands program and their applications. Based on joint work with Andy Neitzke and Sam Gunningham. 

Mon, 04 Jun 2018
17:00
L6

Growth of groups, isoperimetry and random walks

Anna Erschler
(ENS Paris)
Abstract

Answering a question of Milnor, Grigorchuk constructed in the early eighties the
first examples of groups of intermediate growth, that is, finitely generated
groups with growth strictly between polynomial and exponential.
In  joint work with Laurent Bartholdi, we show that under a mild regularity assumption, any function greater than exp(n^a), where `a' is a solution of the equation
  2^(3-3/x)+ 2^(2-2/x)+2^(1-1/x)=2,
is a growth function of some group. These are the first examples of groups
of intermediate growth where the asymptotic of  the growth function is known.
Among applications of our results is the fact that any group of locally subexponential growth
can be embedded as a subgroup of some group of intermediate growth (some of these latter groups cannot be  subgroups in Grigorchuk groups).

In a recent work with Tianyi Zheng, we  provide  near optimal lower bounds
for Grigorchuk torsion groups, including the first Grigorchuk group. Our argument is by a construction of random walks with non-trivial Poisson boundary, defined by 
a measure with power law decay.

Mon, 04 Jun 2018
15:45
L6

Heegaard Floer, taut foliations, and regions of rational surgery slopes

Sarah Rasmussen
(Cambridge)
Abstract

Recent tools make it possible to partition the space of rational Dehn 
surgery slopes for a knot (or in some cases a link) in a 3-manifold into 
domains over which the Heegaard Floer homology of the surgered manifolds 
behaves continuously as a function of slope. I will describe some 
techniques for determining the walls of discontinuity separating these 
domains, along with efforts to interpret some aspects of this structure 
in terms of the behaviour of co-oriented taut foliations. This talk 
draws on a combination of independent work, previous joint work with 
Jake Rasmussen, and work in progress with Rachel Roberts.