Forthcoming events in this series


Mon, 17 Jun 2019
15:45
L6

The Teichmüller TQFT volume conjecture for twist knots

Fathi Ben Aribi
(Geneva)
Abstract

(joint work with E. Piguet-Nakazawa)

In 2014, Andersen and Kashaev defined an infinite-dimensional TQFT from quantum Teichmüller theory. This Teichmüller TQFT is an invariant of triangulated 3-manifolds, in particular knot complements.

The associated volume conjecture states that the Teichmüller TQFT of an hyperbolic knot complement contains the volume of the knot as a certain asymptotical coefficient, and Andersen-Kashaev proved this conjecture for the first two hyperbolic knots.

In this talk I will present the construction of the Teichmüller TQFT and how we approached this volume conjecture for the infinite family of twist knots, by constructing new geometric triangulations of the knot complements.

No prerequisites in Quantum Topology are needed.

Mon, 10 Jun 2019
17:00
L6

Curve complexes of Artin groups and Borel-Serre bordifications of hyperplane arrangement complements

Michael Davis
(Ohio State University)
Abstract

This is a report on work in progress with Jingyin Huang. The complement of an arrangement of linear hyperplanes in a complex vector space has a natural “Borel-Serre bordification” as a smooth manifold with corners. Its universal cover is analogous to the Borel-Serre bordification of an arithmetic lattice acting on a symmetric space as well as to the Harvey bordification of Teichmuller space. In the first case the boundary of this bordification is homotopy equivalent to a spherical building; in the second case it is homotopy equivalent to curve complex of the surface. In the case of a reflection arrangement the boundary of its universal cover is the “curve complex” of the corresponding spherical Artin group. By definition this is the simplicial complex of all conjugates of proper, irreducible, spherical parabolic subgroups in the Artin group. A cohomological method is used to show that the curve complex of a spherical Artin group has the homotopy type of a wedge of spheres.

Mon, 10 Jun 2019
15:45
L6

Unitary group integrals, surfaces, and mapping class groups

Michael Magee
(Durham University)
Abstract


For any word w in a free group of rank r>0, and any compact group G, w induces a `word map' from G^r to G by substitutions of elements of G for the letters of w. We may also choose the r elements of G independently with respect to Haar measure on G, and then apply the word map. This gives a random element of G whose distribution depends on w. An interesting observation is that this distribution doesn't change if we change w by an automorphism of the free group. It is a wide open question whether the measures induced by w on compact groups determine w up to automorphisms.
My talk will be mostly about the case G = U(n), the n by n complex unitary matrices. The technical tool we use is a precise formula for the moments of the distribution induced by w on U(n). In the formula, there is a surprising appearance of concepts from infinite group theory, more specifically, Euler characteristics of mapping class groups of surfaces. I'll explain how our formula allows us to make progress on the question described above.
This is joint work with Doron Puder (Tel Aviv).
 

Mon, 03 Jun 2019
15:45
L6

The Tits alternative for two-dimensional Artin groups

Alexandre Martin
(Heriot Watt University)
Abstract

A group is said to satisfy the Tits Alternative if its finitely generated subgroups exhibit a striking dichotomy: they are either "big" (they contain a non-abelian free subgroup) or "small" (they are virtually soluble). Many groups of geometric interest have been shown to satisfy the Tits Alternative: linear groups, mapping class groups of hyperbolic surfaces, etc. In this talk, I will explain how one can use ideas from group actions in negative curvature to prove such a dichotomy. In particular, I will show how one can prove a strengthening of the Tits Alternative for a large class of Artin groups. This is joint work with Piotr Przytycki.

Mon, 27 May 2019
15:45
L6

Secondary invariants and mock modularity

Theo Johnson-Freyd
(Perimeter Institute for Theoretical Physics)
Abstract

A two-dimensional, minimally Supersymmetric Quantum Field Theory is "nullhomotopic" if it can be deformed to one with spontaneous supersymmetry breaking, including along deformations that are allowed to "flow up" along RG flow lines. SQFTs modulo nullhomotopic SQFTs form a graded abelian group $SQFT_\bullet$. There are many SQFTs with nonzero index; these are definitely not nullhomotopic, and indeed represent nontorision classes in $SQFT_\bullet$. But relations to topological modular forms suggests that $SQFT_\bullet$ also has rich torsion. Based on an analysis of mock modularity and holomorphic anomalies, I will describe explicitly a "secondary invariant" of SQFTs and use it to show that a certain element of $SQFT_3$ has exact order $24$. This work is joint with D. Gaiotto and E. Witten.

Mon, 20 May 2019
15:45
L6

Rational cobordisms and integral homology

Paolo Aceto
(Oxford)
Abstract

We prove that every rational homology cobordism class in the subgroup generated
by lens spaces contains a unique connected sum of lens spaces whose first homology embeds in
any other element in the same class. As a consequence we show that several natural maps to
the rational homology cobordism group have infinite rank cokernels, and obtain a divisibility
condition between the determinants of certain 2-bridge knots and other knots in the same
concordance class. This is joint work with Daniele Celoria and JungHwan Park.

Mon, 13 May 2019
15:45
L6

On operads with homological stability

Tom Zeman
(Oxford)
Abstract

In a recent paper, Basterra, Bobkova, Ponto, Tillmann and Yeakel defined
topological operads with homological stability (OHS) and proved that the
group completion of an algebra over an OHS is weakly equivalent to an
infinite loop space.

In this talk, I shall outline a construction which to an algebra A over
an OHS associates a new infinite loop space. Under mild conditions on
the operad, this space is equivalent as an infinite loop space to the
group completion of A. This generalises a result of Wahl on the
equivalence of the two infinite loop space structures constructed by
Tillmann on the classifying space of the stable mapping class group. I
shall also talk about an application of this construction to stable
moduli spaces of high-dimensional manifolds in thesense of Galatius and
Randal-Williams.

Mon, 06 May 2019
15:45
L6

Holomorphic curves and Seiberg-Witten invariants for 4-dimensional cobordisms

Yi-Jen Lee
(The Chinese University of Hong Kong)
Abstract

We will discuss a variant of Taubes’s Seiberg-Witten to Gromov theorem in the context of a 4-manifold with cylindrical ends, equipped with a nontrivial harmonic 2-form. This harmonic 2-form is allowed to be asymptotic to 0 on some (but not all) of its ends, and may have nondegenerate zeros along 1-submanifolds. Corollaries include various positivity results; some simple special cases of these constitute a key ingredient in Kutluhan-Lee-Taubes’s proof of HM = HF (Monopole Floer homology equals Heegaard Floer homology). The aforementioned general theorem is motivated by (potential) extensions of the HM = HF and Lee-Taubes’s HM = PFH (Periodic Floer homology) theorems.

Mon, 29 Apr 2019
15:45
L6

Knots, SL_2(R) representations, and a total Lin invariant

Jacob Rasmussen
(Cambridge)
Abstract

X.S. Lin defined an invariant of knots in S^3 by counting represenations 
of the knot group into SU(2) with fixed meridinal holonomy. Lin's 
invariant was subsequently shown to coincide with the Levine-Tristam 
signature. I'll define an analogous total Lin invariant which counts 
repesentations into both SU(2) and SL_2(R). Unlike the SU(2) version, this 
invariant does not (as far as I know) coincide with other known 
invariants. I'll describe some applications to left-orderability of Dehn 
fillings and branched covers, as well as a curious connection with the 
Alexander polynomial. This is joint work with Nathan Dunfield.

Mon, 18 Mar 2019
15:45
C4

Algebraic cobordism categories and Grothendieck-Witt-theory

Fabian Hebestreit
(University of Bonn)
Abstract

I will explain how Lurie‘s approach to L-theory via Poincaré categories can be extended to yield cobordism categories of Poincaré objects à la Ranicki. These categories can be delooped by an iterated Q-construction and the resulting spectrum is a derived version of Grothendieck-Witt-theory.  Its homotopy type can be described in terms of K- and L-theory as conjectured by Hesselholt-Madsen. Furthermore, it has a clean universal property analogous to that of K-theory, localisation sequences in much greater generality than classical Grothendieck-Witt theory, gives a cycle description of Weiss-Williams‘ LA-theory and allows for maps from the geometric cobordism category, refining and unifying various known invariants.

All original material is joint work with B.Calmès, E.Dotto, Y.Harpaz, M.Land, K.Moi, D.Nardin, T.Nikolaus and W.Steimle.

Mon, 18 Mar 2019
14:15
C4

Invariants for sublinearly biLipschitz equivalence

Gabriel Pallier
(Université Paris-Sud 11)
Abstract


The large-scale features of groups and spaces are recorded by asymptotic invariants. Examples of asymptotic invariants are the asymptotic cone and, for hyperbolic groups, the Gromov boundary.
In his study of asymptotic cones of connected Lie groups, Yves Cornulier introduced a class of maps called sublinearly biLipschitz equivalences. Like the more traditionnal quasiisometries, sublinearly biLipschitz equivalences are biLipschitz on the large-scale, but unlike quasiisometries, they are generally not coarse. Sublinearly biLipschitz equivalences still induce biLipschitz homeomorphisms between asymptotic cones. In this talk, I will focus on Gromov-hyperbolic groups and show how the Gromov boundary can be used to produce invariants distinguishing them up to sublinearly biLipschitz equivalences when the asymptotic cones do not. I will especially give applications to the large-scale sublinear geometry of hyperbolic Lie groups.
 

Mon, 04 Mar 2019
15:45
L6

Acylindrically hyperbolic groups with strong fixed point properties

Ashot Minasyan
(University of Southampton)
Abstract


The concept of an acylindrically hyperbolic group, introduced by D. Osin, generalizes hyperbolic and relatively hyperbolic groups, and includes many other groups of interest: Out(F_n), n>1, most mapping class groups, directly indecomposable non-cyclic right angled Artin groups, most graph products, groups of deficiency at least 2, etc. Roughly speaking, a group G is acylindrically hyperbolic if there is a (possibly infinite) generating set X of G such that the Cayley graph \Gamma(G,X) is hyperbolic and the action of G on it is "sufficiently nice". Many global properties of hyperbolic/relatively hyperbolic groups have been also proved for acylindrically hyperbolic groups. 
In the talk I will discuss a method which allows to construct a common acylindrically hyperbolic quotient for any countable family of countable acylindrically hyperbolic groups. This allows us to produce acylindrically hyperbolic groups with many unexpected properties.(The talk will be based on joint work with Denis Osin.)
 

Mon, 25 Feb 2019
15:45
L6

Twisted Blanchfield pairings and Casson-Gordon invariants

Anthony Conway
(Durham University)
Abstract

 In the late seventies, Casson and Gordon developed several knot invariants that obstruct a knot from being slice, i.e. from bounding a disc in the 4-ball. In this talk, we use twisted Blanchfield pairings to define twisted generalisations of the Levine-Tristram signature function, and describe their relation to the Casson-Gordon invariants. If time permits, we will present some obstructions to algebraic knots being slice. This is joint work with Maciej Borodzik and Wojciech Politarczyk.

Wed, 20 Feb 2019

17:00 - 18:00
C1

Virtual fibring of manifolds and groups

Dawid Kielak
Abstract

I will discuss Agol's proof of the Virtually Fibred Conjecture of
Thurston, focusing on the role played by the `RFRS' property. I will
then show how one can modify parts of Agol's proof by replacing some
topological considerations with a group theoretic statement about
virtual fibring of RFRS groups.
 

Mon, 18 Feb 2019
16:30
L1

Structure of approximate subgroups of nilpotent groups and applications

Romain Tessera
(University of Paris Sud)
Abstract

In a joint work with Matt Tointon, we study the fine structure of approximate groups. We deduce various applications on growth, isoperimetry and quantitative estimates for the the simple random walk on finite vertex transitive graphs.

Mon, 18 Feb 2019
15:30
L1

Cross ratios on cube complexes and length-spectrum rigidity

Elia Fioravanti
(Oxford)
Abstract

A conjecture from the '80s claims that the isometry type of a closed, negatively curved Riemannian manifold should be uniquely determined by the lengths of its closed geodesics. By work of Otal, this is essentially equivalent to the problem of extending cross-ratio preserving maps between Gromov boundaries of simply connected, negatively curved manifolds. Progress on the conjecture has been remarkably slow, with only the 2-dimensional and locally symmetric cases having been solved so far (Otal '90 and Hamenstädt '99).
Still, it is natural to try leaving the world of manifolds and address the conjecture in the general context of non-positively curved metric spaces. We restrict to the class of CAT(0) cube complexes, as their geometry is both rich and well-understood. We introduce a new notion of cross ratio on their horoboundary and use it to provide a full answer to the conjecture in this setting. More precisely, we show that essential, hyperplane-essential cubulations of Gromov-hyperbolic groups are completely determined by their combinatorial length functions. One can also consider non-proper non-cocompact actions of non-hyperbolic groups, as long as the cube complexes are irreducible and have no free faces.
Joint work with J. Beyrer and M. Incerti-Medici.

Mon, 18 Feb 2019
14:15
L1

RAAGs and Stable Commutator Length

Nicolaus Heuer
(Oxford)
Abstract

Stable commutator length (scl) is a well established invariant of elements g in the commutator subgroup (write scl(g)) and has both geometric and algebraic meaning.  A group has a \emph{gap} in stable commutator length if for every non-trivial element g, scl(g) > C for some C > 0.
SCL may be interpreted as an 'algebraic translation length' and such a gap may be thus interpreted an 'algebraic injectivity radius'.
Many classes of groups have such a gap, like hyperbolic groups, mapping class groups, Baumslag-Solitar groups and graph of groups.
In this talk I will show that Right-Angled Artin Groups have the optimal scl-gap of 1/2. This yields a new invariant for the vast class of subgroups of Right-Angled Artin Groups.

Mon, 18 Feb 2019
13:15
L1

Quasi-isometric embeddings of symmetric spaces and lattices

Thang Nguyen
(Courant Institute of Mathematical Sciences)
Abstract

Symmetric spaces and lattices are important objects to model spaces in geometry and topology. They have been studied from many different viewpoints. We will concentrate on their coarse geometry view point in this talk. I will first quickly go over some well-known results about quasi-isometry of those spaces. Then I will move to the study about quasi-isometric embeddings. While results in this direction are far less complete and well-studied, there are some rigidity phenomenons still happening here.

Mon, 11 Feb 2019
15:45
L6

Local flexibility for open partial differential relations

Bernhard Hanke
(University of Augsburg)
Abstract

In his famous book on partial differential relations Gromov formulates an exercise concerning local deformations of solutions to open partial differential relations. We will explain the content of this fundamental assertion and sketch a proof. 

In the sequel we will apply this to extend local deformations of closed $G_2$ structures, and to construct 
$C^{1,1}$-Riemannian metrics which are positively curved "almost everywhere" on arbitrary manifolds. 

This is joint work with Christian Bär (Potsdam).

Mon, 04 Feb 2019
15:45
L6

Slice discs in stabilized 4-balls

Matthias Nagel
(Oxford)
Abstract


We recall the impact of stabilizing a 4-manifold with $S^2 \times S^2$. The corresponding local situation concerns knots in the 3-sphere which bound (nullhomotopic) discs in a stabilized 4-ball. We explain how these discs arise, and discuss bounds on the minimal number of stabilizations needed. Then we compare this minimal number to the 4-genus.
This is joint work with A. Conway.

Mon, 28 Jan 2019
15:45
L6

Transfers and traces in the algebraic K-theory of spaces

George Raptis
(Regensburg)
Further Information

The algebraic K-theory of a space encodes important invariants of the space which are of interest in both homotopy theory and geometric topology. 

In this talk, I will discuss properties of transfer maps in the algebraic K-theory of spaces ('wrong-way' maps) in connection with index theorems for (smooth or topological) manifold bundles and also compare these maps with other related constructions such as the Becker-Gottlieb transfer and the Waldhausen trace.

Mon, 21 Jan 2019
15:45
L6

Dilation of formal groups, and potential applications

Neil Strickland
(University of Sheffield)
Abstract


I will describe an extremely easy construction with formal group laws, and a 
slightly more subtle argument to show that it can be done in a coordinate-free
way with formal groups.  I will then describe connections with a range of other
phenomena in stable homotopy theory, although I still have many more 
questions than answers about these.  In particular, this should illuminate the
relationship between the Lambda algebra and the Dyer-Lashof algebra at the
prime 2, and possibly suggest better ways to think about related things at 
odd primes.  The Morava K-theory of symmetric groups is well-understood
if we quotient out by transfers, but somewhat mysterious if we do not pass
to that quotient; there are some suggestions that dilation will again be a key
ingredient in resolving this.  The ring $MU_*(\Omega^2S^3)$ is another
object for which we have quite a lot of information but it seems likely that 
important ideas are missing; dilation may also be relevant here.
 

Mon, 14 Jan 2019
15:45
L6

Dimension series and homotopy groups of spheres

Laurent Bartholdi
(Goettingen)
Abstract


The lower central series of a group $G$ is defined by $\gamma_1=G$ and $\gamma_n = [G,\gamma_{n-1}]$. The "dimension series", introduced by Magnus, is defined using the group algebra over the integers: $\delta_n = \{g: g-1\text{ belongs to the $n$-th power of the augmentation ideal}\}$.

It has been, for the last 80 years, a fundamental problem of group theory to relate these two series. One always has $\delta_n\ge\gamma_n$, and a conjecture by Magnus, with false proofs by Cohn, Losey, etc., claims that they coincide; but Rips constructed an example with $\delta_4/\gamma_4$ cyclic of order 2. On the positive side, Sjogren showed that $\delta_n/\gamma_n$ is always a torsion group, of exponent bounded by a function of $n$. Furthermore, it was believed (and falsely proven by Gupta) that only $2$-torsion may occur.
In joint work with Roman Mikhailov, we prove however that for every prime $p$ there is a group with $p$-torsion in some quotient $\delta_n/\gamma_n$.
Even more interestingly, I will show that the dimension quotient $\delta_n/gamma_n$ is related to the difference between homotopy and homology: our construction is fundamentally based on the order-$p$ element in the homotopy group $\pi_{2p}(S^2)$ due to Serre.
 

Mon, 26 Nov 2018
17:00
L6

Lattices and correction terms

Kyle Larsson
(Alfréd Rényi Institute of Mathematics)
Abstract

 I will introduce two obstructions for a rational homology 3-sphere to smoothly bound a rational homology 4-ball- one coming from Donaldson's theorem on intersection forms of definite 4-manifolds, and the other coming from correction terms in Heegaard Floer homology. If L is a nonunimodular definite lattice, then using a theorem of Elkies we will show that whether L embeds in the standard definite lattice of the same rank is completely determined by a collection of lattice correction terms, one for each metabolizing subgroup of the discriminant group. As a topological application this gives a rephrasing of the obstruction coming from Donaldson's theorem. Furthermore, from this perspective it is easy to see that if the obstruction to bounding a rational homology ball coming from Heegaard Floer correction terms vanishes, then (under some mild hypotheses) the obstruction from Donaldson's theorem vanishes too.

Mon, 26 Nov 2018
15:45
L6

Orthogonal group and higher categorical adjoints

David Ayala
(Montana State University)
Abstract


In this talk I will articulate and contextualize the following sequence of results.

The Bruhat decomposition of the general linear group defines a stratification of the orthogonal group.
Matrix multiplication defines an algebra structure on its exit-path category in a certain Morita category of categories.  
In this Morita category, this algebra acts on the category of n-categories -- this action is given by adjoining adjoints to n-categories. 

This result is extracted from a larger program -- entirely joint with John Francis, some parts joint with Nick Rozenblyum -- which proves the cobordism hypothesis.  

Mon, 19 Nov 2018
15:45
L6

Random triangular Burnside groups

John Mackay
(University of Bristol)
Abstract

In this talk I will discuss recent joint work with Dominik Gruber where 
we find a reasonable model for random (infinite) Burnside groups, 
building on earlier tools developed by Coulon and Coulon-Gruber.

The free Burnside group with rank r and exponent n is defined to be the 
quotient of a free group of rank r by the normal subgroup generated by 
all elements of the form g^n; quotients of such groups are called 
Burnside groups.  In 1902, Burnside asked whether any such groups could 
be infinite, but it wasn't until the 1960s that Novikov and Adian showed 
that indeed this was the case for all large enough odd n, with later 
important developments by Ol'shanski, Ivanov, Lysenok and others.

In a different direction, when Gromov developed the theory of hyperbolic 
groups in the 1980s and 90s, he observed that random quotients of free 
groups have interesting properties: depending on exactly how one chooses 
the number and length of relations one can typically gets hyperbolic 
groups, and these groups are infinite as long as not too many relations 
are chosen, and exhibit other interesting behaviour.  But one could 
equally well consider what happens if one takes random quotients of 
other free objects, such as free Burnside groups, and that is what we 
will discuss.
 

Mon, 12 Nov 2018
15:45
L6

Geodesic Currents and Counting Curves

Viveka Erlandsson
(Bristol University)
Abstract

Two curves in a closed hyperbolic surface of genus g are of the same type if they differ by a mapping class. Mirzakhani studied the number of curves of given type and of hyperbolic length bounded by L, showing that as L grows, it is asymptotic to a constant times L^{6g-6}. In this talk I will discuss a generalization of this result, allowing for other notions of length. For example, the same asymptotics hold if we put any (singular) Riemannian metric on the surface. The main ingredient in this generalization is to study measures on the space of geodesic currents.

Mon, 05 Nov 2018
15:45
L6

Random graphs with constant r-balls

David Ellis
(Queen Mary University of London)
Abstract


Let F be a fixed infinite, vertex-transitive graph. We say a graph G is `r-locally F' if for every vertex v of G, the ball of radius r and centre v in G is isometric to the ball of radius r in F. For each positive integer n, let G_n = G_n(F,r) be a graph chosen uniformly at random from the set of all unlabelled, n-vertex graphs that are r-locally F. We investigate the properties that the random graph G_n has with high probability --- i.e., how these properties depend upon the fixed graph F. 
We show that if F is a Cayley graph of a torsion-free group of polynomial growth, then there exists a positive integer r_0 such that for every integer r at least r_0, with high probability the random graph G_n = G_n(F,r) defined above has largest component of size between n^{c_1} and n^{c_2}, where 0 < c_1 < c_2  < 1 are constants depending upon F alone, and moreover that G_n has at least exp(poly(n)) automorphisms. This contrasts sharply with the random d-regular graph G_n(d) (which corresponds to the case where F is replaced by the infinite d-regular tree).
Our proofs use a mixture of results and techniques from group theory, geometry and combinatorics, including a recent and beautiful `rigidity' result of De La Salle and Tessera.
We obtain somewhat more precise results in the case where F is L^d (the standard Cayley graph of Z^d): for example, we obtain quite precise estimates on the number of n-vertex graphs that are r-locally L^d, for r at least linear in d, using classical results of Bieberbach on crystallographic groups.
Many intriguing open problems remain: concerning groups with torsion, groups with faster than polynomial growth, and what happens for more general structures than graphs.
This is joint work with Itai Benjamini (Weizmann Institute).
 

Mon, 29 Oct 2018
15:45
L6

From PDEs to groups

Andrzej Zuk
(University Paris 7 and Imperial College)
Abstract

We present a construction which associates to a KdV equation the lamplighter group. 
In order to establish this relation we use automata and random walks on ultra discrete limits. 
It is also related to the L2 Betti numbers introduced by Atiyah which are homotopy 
invariants of closed manifolds.

Mon, 22 Oct 2018
15:45
L6

Directed algebraic topology

Lisbeth Fajstrup
(Aalborg University)
Abstract

In directed algebraic topology, a topological space is endowed 
with an extra structure, a selected subset of the paths called the 
directed paths or the d-structure. The subset has to contain the 
constant paths, be closed under concatenation and non-decreasing 
reparametrization. A space with a d-structure is a d-space.
If the space has a partial order, the paths increasing wrt. that order 
form a d-structure, but the circle with counter clockwise paths as the 
d-structure is a prominent example without an underlying partial order.
Dipaths are dihomotopic if there is a one-parameter family of directed 
paths connecting them. Since in general dipaths do not have inverses, 
instead of fundamental groups (or groupoids), there is a fundamental 
category. So already at this stage, the algebra is less desirable than 
for topological spaces.
We will give examples of what is currently known in the area, the kind 
of methods used and the problems and questions which need answering - in 
particular with applications in computer science in mind.
 

Mon, 15 Oct 2018
15:45
L6

Formal Moduli Problems via Partition Lie Algebras

Lukas Brantner
(Oxford University)
Abstract

If k is a field of characteristic zero, a theorem of Lurie and Pridham establishes an equivalence between formal moduli problems and differential graded Lie algebras over k. We generalise this equivalence in two different ways to arbitrary ground fields by using “partition Lie algebras”. These mysterious new gadgets are intimately related to the genuine equivariant topology of the partition complex, which allows us to access the operations acting on their homotopy groups (relying on earlier work of Dyer-Lashof, Priddy, Goerss, and Arone-B.). This is joint work with Mathew.

Mon, 08 Oct 2018
15:45
L6

The loop space homology of a small category

Robert Oliver
(University Paris 13)
Abstract


In an article published in 2009, Dave Benson described, for a finite group $G$, the mod $p$ homology of the space $\Omega(BG^\wedge_p)$ --- the loop space of the $p$-completion of $BG$ --- in purely algebraic terms. In joint work with Carles Broto and Ran Levi, we have tried to better understand Benson's result by generalizing it. We showed that when $\mathcal{C}$ is a small category, $|\mathcal{C}|$ is its geometric realization, $R$ is a commutative ring, and $|\mathcal{C}|^+_R$ is a plus construction of $|\mathcal{C}|$ with respect to homology with coefficients in $R$, then $H_*(\Omega(|\mathcal{C}|^+_R);R)$ is the homology any chain complex of projective $R\mathcal{C}$-modules that satisfies certain conditions. Benson's theorem is then the special case where $\mathcal{C}$ is the category associated to a finite group $G$ and $R=F_p$, so that $p$-completion is a special case of the plus construction.
 

Mon, 18 Jun 2018
15:45
L3

Semi-stability in Nonpositive curvature

Eric Swenson
(Brigham Young University)
Abstract

A proper simply connected one-ended metric space is call semi-stable if any two proper rays are properly homotopic.  A finitely presented group is called semi-stable if the universal cover of its presentation 2-complex is semi-stable.  
It is conjectured that every finitely presented group is semi-stable.  We will examine the known results for the cases where the group in question is relatively hyperbolic or CAT(0). 
 

Mon, 11 Jun 2018
15:45
L2

Moduli stacks of vacua in geometric representation theory

David Ben-Zvi
(University of Texas at Austin)
Abstract

Topological field theories give rise to a wealth of algebraic structures, extending
the E_n algebra expressing the "topological OPE of local operators". We may interpret these algebraic structures as defining (slightly noncommutative) algebraic varieties and stacks, called moduli stacks of vacua, and relations among them. I will discuss some examples of these structures coming from the geometric Langlands program and their applications. Based on joint work with Andy Neitzke and Sam Gunningham. 

Mon, 04 Jun 2018
17:00
L6

Growth of groups, isoperimetry and random walks

Anna Erschler
(ENS Paris)
Abstract

Answering a question of Milnor, Grigorchuk constructed in the early eighties the
first examples of groups of intermediate growth, that is, finitely generated
groups with growth strictly between polynomial and exponential.
In  joint work with Laurent Bartholdi, we show that under a mild regularity assumption, any function greater than exp(n^a), where `a' is a solution of the equation
  2^(3-3/x)+ 2^(2-2/x)+2^(1-1/x)=2,
is a growth function of some group. These are the first examples of groups
of intermediate growth where the asymptotic of  the growth function is known.
Among applications of our results is the fact that any group of locally subexponential growth
can be embedded as a subgroup of some group of intermediate growth (some of these latter groups cannot be  subgroups in Grigorchuk groups).

In a recent work with Tianyi Zheng, we  provide  near optimal lower bounds
for Grigorchuk torsion groups, including the first Grigorchuk group. Our argument is by a construction of random walks with non-trivial Poisson boundary, defined by 
a measure with power law decay.

Mon, 04 Jun 2018
15:45
L6

Heegaard Floer, taut foliations, and regions of rational surgery slopes

Sarah Rasmussen
(Cambridge)
Abstract

Recent tools make it possible to partition the space of rational Dehn 
surgery slopes for a knot (or in some cases a link) in a 3-manifold into 
domains over which the Heegaard Floer homology of the surgered manifolds 
behaves continuously as a function of slope. I will describe some 
techniques for determining the walls of discontinuity separating these 
domains, along with efforts to interpret some aspects of this structure 
in terms of the behaviour of co-oriented taut foliations. This talk 
draws on a combination of independent work, previous joint work with 
Jake Rasmussen, and work in progress with Rachel Roberts.

Mon, 28 May 2018
15:45
L6

Topological field theory on r-spin surfaces and the Arf invariant

Lorant Szegedy
(University of Hamburg)
Abstract

We present a state-sum construction of TFTs on r-spin surfaces which
uses a combinatorial model of r-spin structures. We give an example of
such a TFT which computes the Arf invariant for r even. We use the
combinatorial model and this TFT to calculate diffeomorphism classes of
r-spin surfaces with parametrized boundary.

Mon, 21 May 2018
15:45
L5

Unbounded rank expanders, property (T), and upgrading

Masato Mimura
(EPFL Lausanne)
Abstract

The problem of "unbounded rank expanders" asks 
whether we can endow a system of generators with a sequence of 
special linear groups whose degrees tend to infinity over quotient rings 
of Z such that the resulting Cayley graphs form an expander family.
Kassabov answered this question in the affirmative. Furthermore, the 
completely satisfactory solution to this question was given by 
Ershov and Jaikin--Zapirain (Invent. Math., 2010);  they proved
Kazhdan's property (T) for elementary groups over non-commutative 
rings. (T) is equivalent to the fixed point property with respect to 
actions on Hilbert spaces by isometries.

We provide a new framework to "upgrade" relative fixed point 
properties for small subgroups to the fixed point property for the 
whole group. It is inspired by work of Shalom (ICM, 2006). Our 
main criterion is stated only in terms of intrinsic group structure 
(but *without* employing any form of bounded generation). 
This, in particular, supplies a simpler (but not quantitative) 
alternative proof of the aforementioned result of Ershov and 
Jaikin--Zapirain.  

If time permits, we will discuss other applications of our result.

Mon, 14 May 2018
17:00
L5

G-actions in quantum mechanics and Koszul duality

Tudor Dimofte
(University of California, Davis)
Abstract

 I will discuss the quantum-field-theory origins of a classic result of Goresky-Kottwitz-MacPherson concerning the Koszul duality between the homology of G and the G-equivariant cohomology of a point. The physical narrative starts from an analysis of supersymmetric quantum mechanics with G symmetry, and leads naturally to a definition of the category of boundary conditions in two-dimensional topological gauge theory, which might be called the "G-equivariant Fukaya category of a point." This simple example illustrates a more general phenomenon (also appearing in C. Teleman's work in recent years) that pure gauge theory in d dimensions seems to control the structure of G-actions in (d-1)-dimensional QFT. This is part of joint work with C. Beem, D. Ben Zvi, M. Bullimore, and A. Neitzke.

Mon, 14 May 2018
15:45
L6

Lie groupoids and index theory

Georges Skandalis
(Paris VII)
Abstract

My talk is based on joint work with Claire Debord (Univ. Auvergne).
We will explain why Lie groupoids are very naturally linked to Atiyah-Singer index theory.
In our approach -originating from ideas of Connes, various examples of Lie groupoids
- allow to generalize index problems,
- can be used to construct the index of pseudodifferential operators without using the pseudodifferential calculus,
- give rise to proofs of index theorems, 
- can be used to construct the pseudodifferential calculus.

Mon, 07 May 2018
15:45
L6

Detecting decompositions of hyperbolic groups

Benjamin J. Barrett
(Cambridge)
Abstract

When studying a group, it is natural and often useful to try to cut it up 
onto simpler pieces. Sometimes this can be done in an entirely canonical 
way analogous to the JSJ decomposition of a 3-manifold, in which the 
collection of tori along which the manifold is cut is unique up to isotopy. 
It is a theorem of Brian Bowditch that if the group acts nicely on a metric 
space with a negative curvature property then a canonical decomposition can 
be read directly from the large-scale geometry of that space. In this talk 
we shall explore an algorithmic consequence of this relationship between 
the large-scale geometry of the group and is algebraic decomposition.

Mon, 30 Apr 2018
15:45
L6

A dynamical regard on knot Floer homology

Paolo Ghiggini
(Nantes)
Abstract

I will prove that the knot Floer homology group
HFK-hat(K, g-1) for a genus g fibered knot K is isomorphic to a
variant of the fixed points Floer homology of an area-preserving
representative of its monodromy. This is a joint work with Gilberto
Spano.
 

Mon, 23 Apr 2018
15:45
L6

Growth gap in hyperbolic groups and amenability

Remi Coulon
(Rennes)
Abstract

(joint work with Françoise Dal'Bo and Andrea Sambusetti)

Given a finitely generated group G acting properly on a metric space X, the exponential growth rate of G with respect to X measures "how big" the orbits of G are. If H is a subgroup of G, its exponential growth rate is bounded above by the one of G. In this work we are interested in the following question: what can we say if H and G have the same exponential growth rate? This problem has both a combinatorial and a geometric origin. For the combinatorial part, Grigorchuck and Cohen proved in the 80's that a group Q = F/N (written as a quotient of the free group) is amenable if and only if N and F have the same exponential growth rate (with respect to the word length). About the same time, Brooks gave a geometric interpretation of Kesten's amenability criterion in terms of the bottom of the spectrum of the Laplace operator. He obtained in this way a statement analogue to the one of Grigorchuck and Cohen for the deck automorphism group of the cover of certain compact hyperbolic manifolds. These works initiated many fruitful developments in geometry, dynamics and group theory. We focus here one the class of Gromov hyperbolic groups and propose a framework that encompasses both the combinatorial and the geometric point of view. More precisely we prove that if G is a hyperbolic group acting properly co-compactly on a metric space X which is either a Cayley graph of G or a CAT(-1) space, then the growth rate of H and G coincide if and only if H is co-amenable in G.  In addition if G has Kazhdan property (T) we prove that there is a gap between the growth rate of G and the one of its infinite index subgroups.

Wed, 11 Apr 2018
15:45
L6

Ergodic Theory of Interval Exchange Transformations

Howard Masur
(Chicago)
Abstract

An interval exchange transformation is a map  of an 
interval to 
itself that rearranges a finite number of intervals by translations.  They 
appear among other places in the 
subject of rational billiards and flows of translation surfaces. An 
interesting phenomenon is that an IET may have dense orbits that are not 
uniformly distributed, a property known as non unique ergodicity.  I will 
talk about this phenomenon and present some new results about how common 
this is. Joint work with Jon Chaika.

Mon, 05 Mar 2018
15:45
L6

Bounce spectra and Liouville currents

Chris Leininger
(Illinois at Urbana-Champaign)
Abstract

A particle bouncing around inside a Euclidean polygon gives rise to a biinfinite "bounce sequence" (or "cutting sequence") recording the (labeled) sides encountered by the particle.  In this talk, I will describe recent work with Duchin, Erlandsson, and Sadanand, where we prove that the set of all bounce sequences---the "bounce spectrum"---essentially determines the shape of the polygon.  This is consequence of a technical result about Liouville currents associated to nonpositively curved Euclidean cone metrics on surfaces.  In the talk I will explain the objects mentioned above, how they relate to each other, and give some idea of how one determines the shape of the polygon from its bounce spectrum.

Mon, 19 Feb 2018
15:45
L6

Exodromy

Clark Barwick
(Edinburgh)
Abstract

It is a truth universally acknowledged, that a local system on a connected topological manifold is completely determined by its attached monodromy representation of the fundamental group. Similarly, lisse ℓ-adic sheaves on a connected variety determine and are determined by representations of the profinite étale fundamental group. Now if one wants to classify constructible sheaves by representations in a similar manner, new invariants arise. In the topological category, this is the exit path category of Robert MacPherson (and its elaborations by David Treumann and Jacob Lurie), and since these paths do not ‘run around once’ but ‘run out’, we coined the term exodromy representation. In the algebraic category, we define a profinite ∞-category – the étale fundamental ∞-category – whose representations determine and are determined by constructible (étale) sheaves. We describe the étale fundamental ∞-category and its connection to ramification theory, and we summarise joint work with Saul Glasman and Peter Haine.

Mon, 12 Feb 2018
15:45
L6

The coarse geometry of group splittings

Alexander Margolis
(Oxford)
Abstract

One of the fundamental themes of geometric group theory is to
view finitely generated groups as geometric objects in their own right,
and to then understand to what extent the geometry of a group determines
its algebra. A theorem of Stallings says that a finitely generated group
has more than one end if and only if it splits over a finite subgroup.
In this talk, I will explain an analogous geometric characterisation of
when a group admits a splitting over certain classes of infinite subgroups.

Mon, 05 Feb 2018
15:45
L6

A transverse knot invariant from Z/2-equivariant Heegaard Floer cohomology

Sungkyung Kang
(Oxford)
Abstract

The Z/2-equivariant Heegaard Floer cohomlogy of the double cover of S^3 along a knot, defined by Lipshitz, Hendricks, and Sarkar, 
is an isomorphism class of F_2[\theta]-modules. In this talk, we show that this invariant is natural, and is functorial under based cobordisms. 
Given a transverse knot K in the standard contact 3-sphere, we define an element of the Z/2-equivariant Heegaard Floer cohomology 
that depends only on the tranverse isotopy class of K, and is functorial under certain symplectic cobordisms.

Mon, 29 Jan 2018
15:45
L6

Generalizations of the Rips Filtration for Quasi-Metric Spaces with Corresponding Stability Results

Katharine Turner
(EPFL Lausanne)
Abstract

Rips filtrations over a finite metric space and their corresponding persistent homology are prominent methods in Topological Data Analysis to summarize the ``shape'' of data. For finite metric space $X$ and distance $r$  the traditional Rips complex with parameter $r$ is the flag complex whose vertices are the points in $X$ and whose edges are $\{[x,y]: d(x,y)\leq r\}$. From considering how the homology of these complexes evolves we can create persistence modules (and their associated barcodes and persistence diagrams). Crucial to their use is the stability result that says if $X$ and $Y$ are finite metric space then the bottleneck distance between persistence modules constructed by the Rips filtration is bounded by $2d_{GH}(X,Y)$ (where $d_{GH}$ is the Gromov-Hausdorff distance). Using the asymmetry of the distance function we construct four different constructions analogous to the persistent homology of the Rips filtration and show they also are stable with respect to the Gromov-Hausdorff distance. These different constructions involve ordered-tuple homology, symmetric functions of the distance function, strongly connected components and poset topology.