Tue, 07 Mar 2023
14:00
C4

The stability and resilience of ecological systems

Sonia Kéfi

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

Dr. Sonia Kéfi is a Research Director at the the Evolution Sciences Institute (ISEM) in Montpellier, France (https://biodicee.edu.umontpellier.fr/who-we-are/sonia-kefi/).

She is also an external professor at the Santa Fe Institute and she was the recipient of the 2020 Erdos-Renyi Prize from the Network Science Society. Her research aims at understanding how ecosystems persist and change under pressure from changing climate and land use. In her works, she combines mathematical modeling and data analysis to investigate the role of ecological interactions in stabilizing and destabilizing ecosystems, as well as to develop indicators of resilience that could warn us of approaching ecosystem shifts.

Abstract

Understanding the stability of ecological communities is a matter of increasing importance in the context of global environmental change. Yet it has proved to be a challenging task. Different metrics are used to assess the stability of ecological systems, and the choice of one metric over another may result in conflicting conclusions. While the need to consider this multitude of stability metrics has been clearly stated in the ecological literature for decades, little is known about how different stability metrics relate to each other. I’ll present results of dynamical simulations of ecological communities investigating the correlations between frequently used stability metrics, and I will discuss how these results may contribute to make progress in the quantification of stability in theory and in practice.

Zoom Link: https://zoom.us/j/93174968155?pwd=TUJ3WVl1UGNMV0FxQTJQMFY0cjJNdz09

Meeting ID: 931 7496 8155

Passcode: 502784

Tue, 07 Mar 2023

14:00 - 15:00
Virtual

A loglog step towards the Erdős-Hajnal conjecture

Paul Seymour
(Princeton)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In 1977, Erdős and Hajnal made the conjecture that, for every graph $H$, there exists $c>0$ such that every $H$-free graph $G$ has a clique or stable set of size at least $|G|^c$; and they proved that this is true with $|G|^c$ replaced by $2^{c\sqrt{\log |G|}}$. Until now, there has been no improvement on this result (for general $H$). We recently proved a strengthening: that for every graph $H$, there exists $c>0$ such that every $H$-free graph $G$ with $|G|\ge 2$ has a clique or stable set of size at least $2^{c\sqrt{\log |G| \log\log|G|}}$. This talk will outline the proof. Joint work with Matija Bucić, Tung Nguyen and Alex Scott.

Tue, 07 Mar 2023
14:00
L6

The anti-spherical Hecke categories for Hermitian symmetric pairs

Maud De Visscher
(City University London)
Abstract

Kazhdan-Lusztig polynomials are remarkable polynomials associated to pairs of elements in a Coxeter group W. They describe the base change between the standard and Kazhdan-Lusztig bases for the corresponding Hecke algebra. They were discovered by Kazhdan and Lusztig in 1979 and have found applications throughout representation theory and geometry. In 1987, Deodhar introduced the parabolic Kazhdan-Lusztig polynomials associated to a Coxeter group W and a standard parabolic subgroup P. These describe the base change between the standard and Kazhdan-Lusztig bases for the anti-spherical module for the Hecke algebra. (We recover the original definition of Kazhdan and Lusztig by taking the trivial parabolic subgroup).

(Anti-spherical) Hecke categories first rose to mathematical celebrity as the centrepiece of the proof of the (parabolic) Kazhdan-Lusztig positivity conjecture. The Hecke category categorifies the Hecke algebra and the anti-spherical Hecke category categorifies the anti-spherical module. More precisely, it was shown by Elias-Williamson (and Libedinsky-Williamson) that the (parabolic) Kazhdan-Lusztig polynomials are precisely the graded decomposition numbers for the (anti-spherical) Hecke categories over fields of characteristic zero, hence proving positivity of their coefficients.
The (anti-spherical) Hecke categories can be defined over any field. Their graded decomposition numbers over fields of positive characteristic p, the so-called (parabolic) p-Kazhdan-Lusztig polynomials, have been shown to have deep connections with the modular representation theory of reductive groups and symmetric groups. However, these polynomials are notoriously difficult to compute.
Unlike in the case of the ordinary (parabolic) Kazhdan-Lusztig polynomials, there is not even a recursive algorithm to compute them in general.
In this talk, I will discuss the representation of the anti-spherical Hecke categories for (W,P) a Hermitian symmetric pair, over an arbitrary field. In particular, I will explain why the decomposition numbers are characteristic free in this case.
This is joint work with C. Bowman, A. Hazi and E. Norton.

Tue, 07 Mar 2023

14:00 - 15:00
Lecture Room 3

Dehomogenization: a new technique for multi-scale topology optimization

Alex Ferrer
Abstract

The recent advancements in additive manufacturing have enabled the creation of lattice structures with intricate small-scale details. This has led to the need for new techniques in the field of topology optimization that can handle a vast number of design variables. Despite the efforts to develop multi-scale topology optimization techniques, their high computational cost has limited their application. To overcome this challenge, a new technique called dehomogenization has shown promising results in terms of performance and computational efficiency for optimizing compliance problems.

In this talk, we extend the application of the dehomogenization method to stress minimization problems, which are crucial in structural design. The method involves homogenizing the macroscopic response of a proposed family of microstructures. Next, the macroscopic structure is optimized using gradient-based methods while orienting the cells according to the principal stress components. The final step involves dehomogenization of the structure. The proposed methodology also considers singularities in the orientation field by incorporating singular functions in the dehomogenization process. The validity of the methodology is demonstrated through several numerical examples.

Tue, 07 Mar 2023
12:30
C3

Mathematical modelling of liquid lithium inside a tokamak fusion reactor

Oliver Bond
Abstract

We model a tokamak fusion reaction, combining Maxwell's equations with the Navier-Stokes equations, the heat equation and the Seebeck effect giving a model of thermoelectric magnetohydrodynamics (TEMHD). At leading order, we showed that the free surface must be flat, that the pressure is constant, and that the temperature decouples from the governing equations relating the fluid velocity and magnetic field. We also find that the fluid flow is driven entirely by the temperature gradient normal to the free surface. Using singular perturbation methods we obtained velocity profiles which exhibit so-called Hartmann layers and thicker side layers. The role of the aspect ratio has been seldom considered in classical MHD duct flow literature as a varying parameter. Here, we show it's importance and derive a relationship between the aspect ratio and Hartmann number that maximises flow rate of fluid down the duct.

Mon, 06 Mar 2023
16:30
L4

Global stability of Kaluza-Klein spacetimes

Zoe Wyatt
(King's College London)
Abstract

Spacetimes formed from the cartesian product of Minkowski space and a flat torus play an important role as toy models for theories of supergravity and string theory. In this talk I will discuss an upcoming work with Huneau and Stingo showing the nonlinear stability of such a Kaluza-Klein spacetime. The result is also connected to a claim of Witten.

Mon, 06 Mar 2023
16:00

TBD

Mon, 06 Mar 2023
15:30
L4

Homeomorphisms of surfaces: a new approach

Richard Webb
(University of Manchester)
Abstract

Despite their straightforward definition, the homeomorphism groups of surfaces are far from straightforward. Basic algebraic and dynamical problems are wide open for these groups, which is a far cry from the closely related and much better understood mapping class groups of surfaces. With Jonathan Bowden and Sebastian Hensel, we introduced the fine curve graph as a tool to study homeomorphism groups. Like its mapping class group counterpart, it is Gromov hyperbolic, and can shed light on algebraic properties such as scl, via geometric group theoretic techniques. This brings us to the enticing question of how much of Thurston's theory (e.g. Nielsen--Thurston classification, invariant foliations, etc.) for mapping class groups carries over to the homeomorphism groups. We will describe new phenomena which are not encountered in the mapping class group setting, and meet some new connections with topological dynamics, which is joint work with Bowden, Hensel, Kathryn Mann and Emmanuel Militon. I will survey what's known, describe some of the new and interesting problems that arise with this theory, and give an idea of what's next.

 

Mon, 06 Mar 2023

15:30 - 16:30
L1

Brownian excursions, conformal loop ensembles and critical Liouville quantum gravity

Ellen Powell
Abstract

It was recently shown by Aidekon and Da Silva how to construct a growth fragmentation process from a planar Brownian excursion. I will explain how this same growth fragmentation process arises in another setting: when one decorates a certain “critical Liouville quantum gravity random surface” with a conformal loop ensemble of parameter 4. This talk is based on joint work with Juhan Aru, Nina Holden and Xin Sun. 
 

Mon, 06 Mar 2023
14:15
L4

Phase transitions with Allen-Cahn mean curvature bounded in $L^p$.

Shengwen Wang
(Queen Mary University)
Abstract

We consider the varifolds associated to phase transitions whose first variation of Allen-Cahn energy is $L^p$ integrable with respect to the energy measure. We can see that the Dirichlet and potential part of the energy are almost equidistributed. After passing to the phase field limit, one can obtain an integer rectifiable varifold with bounded $L^p$ mean curvature. This is joint work with Huy Nguyen.

Mon, 06 Mar 2023

14:00 - 15:00
L6

A Matrix-Mimetic Tensor Algebra for Optimal Representations of Multiway Data

Elizabeth Newman
(Emory University )
Abstract

The data revolution has changed the landscape of computational mathematics and has increased the demand for new numerical linear algebra tools to handle the vast amount of data. One crucial task is data compression to capture the inherent structure of data efficiently. Tensor-based approaches have gained significant traction in this setting by exploiting multilinear relationships in multiway data. In this talk, we will describe a matrix-mimetic tensor algebra that offers provably optimal compressed representations of high-dimensional data. We will compare this tensor-algebraic approach to other popular tensor decomposition techniques and show that our approach offers both theoretical and numerical advantages.

Mon, 06 Mar 2023
13:00
L1

Bounds on quantum evolution complexity via lattice cryptography

Marine De Clerck
(Cambridge)
Abstract

I will present results from arXiv:2202.13924, where we studied the difference between integrable and chaotic motion in quantum theory as manifested by the complexity of the corresponding evolution operators. The notion of complexity of interest to us will be Nielsen’s complexity applied to the time-dependent evolution operator of the quantum systems. I will review Nielsen’s complexity, discuss the difficulties associated with this definition and introduce a simplified approach which appears to retain non-trivial information about the integrable properties of the dynamical systems.

Mon, 06 Mar 2023
11:15
L6

Modular Hecke algebras and Galois representations

(University of Rennes)
Abstract

Let F be a p-adic local field and let G be a connected split reductive group over F. Let H be the pro-p Iwahori-Hecke algebra of the p-adic group G(F), with coefficients in an algebraically closed field k of characteristic p. The module theory over H (or a certain derived version thereof) is of considerable interest in the so-called mod p local Langlands program for G(F), whose aim is to relate the smooth modular representation theory of G(F) to modular representations of the absolute Galois group of F. In this talk, we explain a possible construction of a certain moduli space for those Galois representations into the Langlands dual group of G over k which are semisimple. We then relate this space to the geometry of H. This is a work in progress with Cédric Pépin.

Fri, 03 Mar 2023

16:00 - 17:00
Lecture Room 6

Topological Optimization with Big Steps

Dmitry Morozov
Abstract

Using persistent homology to guide optimization has emerged as a novel application of topological data analysis. Existing methods treat persistence calculation as a black box and backpropagate gradients only onto the simplices involved in particular pairs. We show how the cycles and chains used in the persistence calculation can be used to prescribe gradients to larger subsets of the domain. In particular, we show that in a special case, which serves as a building block for general losses, the problem can be solved exactly in linear time. We present empirical experiments that show the practical benefits of our algorithm: the number of steps required for the optimization is reduced by an order of magnitude. (Joint work with Arnur Nigmetov.)

Fri, 03 Mar 2023
16:00
C4

Integrability I

Adam Kmec
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Fri, 03 Mar 2023
16:00
L1

What makes a good academic discussion? A panel event

Chair: Ian Hewitt (Associate HoD (People)) Panel: James Sparks (HoD); Helen Byrne (winner of MPLS Outstanding Supervisor Awards for 2022); Ali Goodall (Head of Faculty Services and HR); and Matija Tapuskovic (EPSRC Postdoctoral Research Fellow)
Abstract

Chair: Ian Hewitt (Associate HoD (People))

Panel:
James Sparks (Head of Department)
Helen Byrne (winner of MPLS Outstanding Supervisor Awards for 2022)
Ali Goodall (Head of Faculty Services and HR)
Matija Tapuskovic (EPSRC Postdoctoral Research Fellow and JRF at Corpus Christi)

Scientific discussions with colleagues, at conferences and seminars, during supervisions and collaborations, are a crucial part of our research process. How can we ensure our academic discussions are fruitful, respectful, and a positive experience for everyone involved? What factors and power dynamics can impact our conversations? How can we make sure everyone’s voice is heard and respected? This panel discussion will probe these questions and encourage us all to reflect on how we approach our academic discussions.

Fri, 03 Mar 2023

14:00 - 15:00
Virtual

An agent-based model of the tumour microenvironment

Dr Cicely Macnamara
(School of Mathematics and Statistics University of Glasgow)
Abstract

The term cancer covers a multitude of bodily diseases, broadly categorised by having cells which do not behave normally. Cancer cells can arise from any type of cell in the body; cancers can grow in or around any tissue or organ making the disease highly complex. My research is focused on understanding the specific mechanisms that occur in the tumour microenvironment via mathematical and computational modelling. In this talk I shall present a 3D individual-based force-based model for tumour growth and development in which we simulate the behaviour of, and spatio-temporal interactions between, cells, extracellular matrix fibres and blood vessels. Each agent is fully realised, for example, cells are described as viscoelastic sphere with radius and centre given within the off-lattice model. Interactions are primarily governed by mechanical forces between elements. However, as well as he mechanical interactions we also consider chemical interactions, by coupling the code to a finite element solver to model the diffusion of oxygen from blood vessels to cells, as well as intercellular aspects such as cell phenotypes. 

Fri, 03 Mar 2023

12:00 - 13:00
N3.12

Automorphisms of Quantum Toroidal Algebras and an Action of The Extended Double Affine Braid Group

Duncan Laurie
(University of Oxford)
Abstract

Quantum toroidal algebras $U_{q}(\mathfrak{g}_{\mathrm{tor}})$ are certain Drinfeld quantum affinizations of quantum groups associated to affine Lie algebras, and can therefore be thought of as `double affine quantum groups'.

In particular, they contain (and are generated by) a horizontal and vertical copy of the affine quantum group. 

Utilising an extended double affine braid group action, Miki obtained in type $A$ an automorphism of $U_{q}(\mathfrak{g}_{\mathrm{tor}})$ which exchanges these subalgebras. This has since played a crucial role in the investigation of its structure and representation theory.

In this talk I shall present my recent work -- which extends the braid group action to all types and generalises Miki's automorphism to the ADE case -- as well as potential directions for future work in this area.

Thu, 02 Mar 2023
16:00
L4

Explicit (and improved) results on the structure of sumsets

Aled Walker
(King's College London)
Abstract

Given a finite set A of integer lattice points in d dimensions, let NA denote the N-fold iterated sumset (i.e. the set comprising all sums of N elements from A). In 1992 Khovanskii observed that there is a fixed polynomial P(N), depending on A, such that the size of the sumset NA equals P(N) exactly (once N is sufficiently large, that is). In addition to this 'size stability', there is a related 'structural stability' property for the sumset NA, which Granville and Shakan recently showed also holds for sufficiently large N. But what does 'sufficiently large' mean in practice? In this talk I will discuss some perspectives on these questions, and explain joint work with Granville and Shakan which proves the first explicit bounds for all sets A. I will also discuss current work with Granville, which gives a tight bound 'up to logarithmic factors' for one of these properties. 

 

Thu, 02 Mar 2023

14:00 - 15:00
Lecture Room 3

Finite element computations for modelling skeletal joints

Jonathan Whiteley
(Oxford University)
Abstract

Skeletal joints are often modelled as two adjacent layers of poroviscoelastic cartilage that are permitted to slide past each other.  The talk will begin by outlining a mathematical model that may be used, focusing on two unusual features of the model: (i) the solid component of the poroviscoelastic body has a charged surface that ionises the fluid within the pores, generating a swelling pressure; and (ii) appropriate conditions are required at the interface between the two adjacent layers of cartilage.  The remainder of the talk will then address various theoretical and practical issues in computing a finite element solution of the governing equations.

 

Thu, 02 Mar 2023

12:00 - 13:00
L4

Intrinsic models on Riemannian manifolds with bounded curvature

Hansol Park
(Simon Fraser University)
Abstract

We investigate the long-time behaviour of solutions to a nonlocal partial differential equation on smooth Riemannian manifolds of bounded sectional curvature. The equation models self-collective behaviour with intrinsic interactions that are modeled by an interaction potential. Without the diffusion term, we consider attractive interaction potentials and establish sufficient conditions for a consensus state to form asymptotically. In addition, we quantify the approach to consensus, by deriving a convergence rate for the diameter of the solution’s support. With the diffusion term, the attractive interaction and the diffusion compete. We provide the conditions of the attractive interaction for each part to win.

Thu, 02 Mar 2023

12:00 - 13:00
L1

The Plankton Hydrodynamic Playbook

Christophe Eloy
(IRPHE Marseille)
Further Information

 

Christophe is Professor of Fluid Mechanics at Centrale Marseille. His research activity is carried out at the IRPHE institute in Marseille.

'His research addresses various fundamental problems of fluid and solid mechanics, including fluid-structure interactions, hydrodynamic instabilities, animal locomotion, aeroelasticity, rotating flows, and plant biomechanics. It generally involves a combination of analytical modeling, experiments, and numerical work.' (Taken from his website here: https://www.irphe.fr/~eloy/).'

 

 

Abstract

By definition, planktonic organisms drift with the water flows. But these millimetric organisms are not necessarily passive; many can swim and can sense the surrounding flow through mechanosensory hairs. But how useful can be flow sensing in a turbulent environment? To address this question, we show two examples of smart planktonic behavior: (1) we develop a model where plantkters choose a swimming direction as a function of the velocity gradient to "surf on turbulence" and move efficiently upwards; (2) we show how a plankter measuring the velocity gradient may track the position of a swimming target from its hydrodynamic signature. 

Ernst Haeckel, Kunstformen der Natur (1904), Copepoda 

 

Wed, 01 Mar 2023
16:00
L6

Algorithms and 3-manifolds

Adele Jackson
(University of Oxford)
Abstract

Given a mathematical object, what can you compute about it? In some settings, you cannot say very much. Given an arbitrary group presentation, for example, there is no procedure to decide whether the group is trivial. In 3-manifolds, however, algorithms are a fruitful and active area of study (and some of them are even implementable!). One of the main tools in this area is normal surface theory, which allows us to describe interesting surfaces in a 3-manifold with respect to an arbitrary triangulation. I will discuss some results in this area, particularly around Seifert fibered spaces.

Wed, 01 Mar 2023

13:00 - 14:00
N3.12

Mathematrix: Targets vs Quotas

Abstract

We will discuss the pros and cons of targets vs quotas in increasing diversity in Mathematics.

Tue, 28 Feb 2023
16:00
C3

Some algebraic aspects of minimal dynamics on the Cantor set

Maryram Hosseini
(Queen Mary, University of London)
Abstract

By Jewett-Krieger theorems minimal dynamical systems on the Cantor set are topological analogous of ergodic systems on probability Lebesgue spaces. In this analogy and to study a Cantor minimal system, indicator functions of clopen sets (as continuous integer or real valued functions) are considered while they are mod out by the subgroup of all co-boundary functions. That is how dimension group which is an operator algebraic object appears in dynamical systems. In this talk, I try to explain a bit more about dimension groups from dynamical point of view and how it relates to topological factoring and spectrum of Cantor minimal systems.

Tue, 28 Feb 2023
15:00
L3

Computing bounded cohomology of discrete groups

Francesco Fournier-Facio
Abstract

Bounded cohomology is a functional-analytic analogue of ordinary cohomology that has become a fundamental tool in many fields, from rigidity theory to the geometry of manifolds. However it is infamously hard of compute, and the lack of very basic examples makes the overall picture still hard to grasp. I will report on recent progress in this direction, and draw attention to some natural questions that remain open.

Tue, 28 Feb 2023

14:00 - 15:00
L4

Some combinatorial applications of guided random processes

Peter Keevash
(Oxford University)
Abstract

Random greedy algorithms became ubiquitous in Combinatorics after Rödl's nibble (semi-random method), which was repeatedly refined for various applications, such as iterative graph colouring algorithms (Molloy-Reed) and lower bounds for the Ramsey number $R(3,t)$ via the triangle-free process (Bohman-Keevash / Fiz Pontiveros-Griffiths-Morris). More recently, when combined with absorption, they have played a key role in many existence and approximate counting results for combinatorial structures, following a paradigm established by my proofs of the Existence of Designs and Wilson's Conjecture on the number of Steiner Triple Systems. Here absorption (converting approximate solutions to exact solutions) is generally the most challenging task, which has spurred the development of many new ideas, including my Randomised Algebraic Construction method, the Kühn-Osthus Iterative Absorption method and Montgomery's Addition Structures (for attacking the Ryser-Brualdi-Stein Conjecture). The design and analysis of a suitable guiding mechanism for the random process can also come with major challenges, such as in the recent proof of Erdős' Conjecture on Steiner Triple Systems of high girth (Kwan-Sah-Sawhney-Simkin). This talk will survey some of this background and also mention some recent results on the Queens Problem (Bowtell-Keevash / Luria-Simkin / Simkin) and the Existence of Subspace Designs (Keevash-Sah-Sawhney). I may also mention recent solutions of the Talagrand / Kahn-Kalai Threshold Conjectures (Frankston-Kahn-Narayanan-Park / Park-Pham) and thresholds for Steiner Triple Systems / Latin Squares (Keevash / Jain-Pham), where the key to my proof is constructing a suitable spread measure via a guided random process.

Tue, 28 Feb 2023
14:00
L6

A Lusztig-Shoji algorithm for quivers and affine Hecke algebras

Jonas Antor
(University of Oxford)
Abstract

Perverse sheaves are an indispensable tool in representation theory. Their stalks often encode important representation theoretic information such as composition multiplicities or canonical bases. For the nilpotent cone, there is an algorithm that computes these stalks, known as the Lusztig-Shoji algorithm. In this talk, we discuss how this algorithm can be modified to compute stalks of perverse sheaves on more general varieties. As an application, we obtain a new algorithm for computing canonical bases in certain quantum groups as well as composition multiplicities for standard modules of the affine Hecke algebra of $\mathrm{GL}_n$.

Mon, 27 Feb 2023
16:30
L4

Optimality problems in function spaces

Luboš Pick
(Charles University)
Abstract

In mathematical modelling, data and solutions are often represented as measurable functions, and their quality is being captured by their membership to a certain function space. One of the core questions arising in applications of this approach is the comparison of the quality of the data and that of the solution. A particular attention is being paid to optimality of the results obtained. A delicate choice of scales of suitable function spaces is required in order to balance the expressivity (the ability to capture fine mathematical properties of the model) and the accessibility (the level of its technical difficulty) for a practical use. We will give an overview of the research area which grew out of these questions and survey recent results obtained in this direction as well as challenging open questions. We will describe a development of a powerful method based on the so-called reduction principles and demonstrate its use on specific problems including the continuity of Sobolev embeddings or boundedness of pivotal integral operators such as the Hardy - Littlewood maximal operator and the Laplace transform.

Mon, 27 Feb 2023
16:00
Quillen Room

TBD

TBD
Mon, 27 Feb 2023
15:30
L4

SL(2,C)-character varieties of knots and maps of degree 1

Raphael Zentner
(Durham University)
Abstract

We ask to what extend the SL(2,C)-character variety of the
fundamental group of the complement of a knot in S^3 determines the
knot. Our methods use results from group theory, classical 3-manifold
topology, but also geometric input in two ways: the geometrisation
theorem for 3-manifolds, and instanton gauge theory. In particular this
is connected to SU(2)-character varieties of two-component links, a
topic where much less is known than in the case of knots. This is joint
work with Michel Boileau, Teruaki Kitano, and Steven Sivek.

Mon, 27 Feb 2023

15:30 - 16:30
L1

Trading on a noisy signal of future stock price evolution — explicit solution to an infinite-dimensional stochastic optimal control problem

Peter Bank (TU Berlin)
Abstract

We consider an investor who is dynamically informed about the future evolution of one of the independent Brownian motions driving a stock's price fluctuations. The resulting rough semimartingale dynamics allow for strong arbitrage, but with linear temporary price impact the resulting optimal investment problem with exponential utility turns out to be well posed. The dynamically revealed Brownian path segment makes the problem infinite-dimensional, but by considering its convex-analytic dual problem, we show that it still can be solved explicitly and we give some financial-economic insights into the optimal investment strategy and the properties of maximum expected utility. (This is joint work with Yan Dolinsky, Hebrew University of Jerusalem).

Mon, 27 Feb 2023
14:15
L4

Equivariant Fukaya categories at singular values

Yankı Lekili
(Imperial College, London)
Abstract

It is well understood by works of Fukaya and Teleman that the Fukaya category of a symplectic reduction at a regular value of the moment map can be computed before taking the quotient as an equivariant Fukaya category. Informed by mirror calculations,  we will give a new geometric interpretation of the equivariant Fukaya category corresponding to a singular value of the moment map where the equivariance is traded with wrapping.

Joint work in progress with Ed Segal.

Mon, 27 Feb 2023
13:30
L5

CDT in Mathematics of Random Systems February Workshop 2023

Deborah Miori, Žan Žurič
Abstract

1:30-2:15 Deborah Miori, CDT student, University of Oxford

DeFi: Data-Driven Characterisation of Uniswap v3 Ecosystem & an Ideal Crypto Law for Liquidity Pools

Uniswap is a Constant Product Market Maker built around liquidity pools, where pairs of tokens are exchanged subject to a fee that is proportional to the size of transactions. At the time of writing, there exist more than 6,000 pools associated with Uniswap v3, implying that empirical investigations on the full ecosystem can easily become computationally expensive. Thus, we propose a systematic workflow to extract and analyse a meaningful but computationally tractable sub-universe of liquidity pools.

Leveraging on the 34 pools found relevant for the six-months time window January-June 2022, we then investigate the related liquidity consumption behaviour of market participants. We propose to represent each liquidity taker by a suitably constructed transaction graph, which is a fully connected network where nodes are the liquidity taker’s executed transactions, and edges contain weights encoding the time elapsed between any two transactions. We extend the NLP-inspired graph2vec algorithm to the weighted undirected setting, and employ it to obtain an embedding of the set of graphs. This embedding allows us to extract seven clusters of liquidity takers, with equivalent behavioural patters and interpretable trading preferences.

We conclude our work by testing for relationships between the characteristic mechanisms of each pool, i.e. liquidity provision, consumption, and price variation. We introduce a related ideal crypto law, inspired from the ideal gas law of thermodynamics, and demonstrate that pools adhering to this law are healthier trading venues in terms of sensitivity of liquidity and agents’ activity. Regulators and practitioners could benefit from our model by developing related pool health monitoring tools.

2:15-3:00 Žan Žurič, CDT student, Imperial College London

A Random Neural Network Approach to Pricing SPDEs for Rough Volatility

We propose a novel machine learning-based scheme for solving partial differential equations (PDEs) and backward stochastic partial differential equations (BSPDE) stemming from option pricing equations of Markovian and non-Markovian models respectively. The use of the so-called random weighted neural networks (RWNN) allows us to formulate the optimisation problem as linear regression, thus immensely speeding up the training process. Furthermore, we analyse the convergence of the RWNN scheme and are able to specify error estimates in terms of the number of hidden nodes. The performance of the scheme is tested on Black-Scholes and rBergomi models and shown to have superior training times with accuracy comparable to existing deep learning approaches.

Mon, 27 Feb 2023
13:00
L1

Towards Hodge-theoretic characterizations of 2d rational SCFTs

Taizan Watari
(Kavli IPMU)
Abstract

A 2d SCFT given as a non-linear sigma model of a Ricci-flat Kahler target 

space is not a rational CFT in general; only special points in the moduli 

space of the target-space metric, the 2d SCFTs are rational. 

Gukov-Vafa's paper in 2002 hinted at a possibility that such special points 

may be characterized by the property "complex multiplication" of the target space, 

which has its origin in number theory. We revisit the idea, refine the Conjecture, 

and prove it in the case the target space is T^4. 
 

This presentation is based on arXiv:2205.10299 and 2212.13028 .

Fri, 24 Feb 2023
16:00
C5

The Atiyah-Singer index theorem: Physics applications

Enrico Marchetto
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Fri, 24 Feb 2023
16:00
L1

North meets South Colloquium

Dr Aleksander Horawa (North Wing); Dr Jemima Tabeart (South Wing)
Abstract

Speaker: Dr Aleksander Horawa (North Wing)
Title: Bitcoin, elliptic curves, and this building


Abstract:
We will discuss two motivations to work on Algebraic Number Theory: applications to cryptography, and fame and fortune. For the first, we will explain how Bitcoin and other companies use Elliptic Curves to digitally sign messages. For the latter, we will introduce two famous problems in Number Theory: Fermat's Last Theorem, worth a name on this building, and the Birch Swinnerton--Dyer conjecture, worth $1,000,000 according to some people in this building (Clay Mathematics Institute).

 

Speaker: Dr Jemima Tabeart (South Wing)
Title: Numerical linear algebra for weather forecasting

Abstract:
The quality of a weather forecast is strongly determined by the accuracy of the initial condition. Data assimilation methods allow us to combine prior forecast information with new measurements in order to obtain the best estimate of the true initial condition. However, many of these approaches require the solution an enormous least-squares problem. In this talk I will discuss some mathematical and computational challenges associated with data assimilation for numerical weather prediction, and show how structure-exploiting numerical linear algebra approaches can lead to theoretical and computational improvements.

Fri, 24 Feb 2023

15:00 - 16:00
Lecture Room 4

Analysing the shape of 3-periodic scalar fields for diffusion modelling

Senja Barthel
Abstract

Simulating diffusion computationally allows to predict the diffusivity of materials, understand diffusion mechanisms, and to tailor-make materials such as solid-state electrolytes with desired properties aiming at developing new batteries. By studying the geometry and topology of 3-periodic scalar fields (e.g. the potential of ions in the electrolyte), we develop a cost-efficient multi-scale model for diffusion in crystalline materials. This project is a typical example of a collaboration in the overlap of topology and materials science that started as a persistent homology project and turned into something else.

Fri, 24 Feb 2023

14:00 - 15:00
L3

Decoding nanopore signals

Dr David Page
(Oxford Nanopore Technologies plc)
Abstract

Nanopore sequencing is a method to infer the sequence of nucleotides in DNA or RNA molecules from small variations in ionic current during transit through a nanoscale pore. We will give an introduction to nanopore sequencing and some of its applications and then explore simple models of the signal generation process. These can provide insight to guide optimisation of the system and inform the design of more flexible neural network models, capable of extracting the rich contextual information required for accurate sequence inference.

Fri, 24 Feb 2023

12:00 - 13:00
N3.12

Flops and Cluster Categories

Charlotte Llewellyn
(University of Glasgow)
Abstract

The crepant resolutions of a singular threefold are related by a finite sequence of birational maps called flops. In the simplest cases, this network of flops is governed by simple combinatorics. I will begin the talk with an overview of flops and crepant resolutions. I will then move on to explain how their underlying combinatorial structure can be abstracted to define the notion of a cluster category.

Fri, 24 Feb 2023

11:45 - 13:15
N4.01

InFoMM Group Meeting

Sophie Abrahams, Oliver Bond, Georgia Brennan, Brady Metherall
(Mathematical Institute)
Thu, 23 Feb 2023
17:00
L3

On the shatter functions of semilinear families

Chieu-Minh Tran
(National University of Singapore)
Abstract

Toward a characterization of modularity using shatter functions, we show that an o-minimal expansion of the  real ordered additive group $(\mathbb{R}; 0, +,<)$ does not define restricted multiplication if and only if the shatter function of every definable family is asymptotic to a polynomial. Our result implies that vc-density can only take integer values in $(\mathbb{R}; 0, +,<)$ confirming a special case of a conjecture by Chernikov. (Joint with Abdul Basit.)

Thu, 23 Feb 2023
17:00
Lecture Theatre 1, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG

Cascading Principles - Conrad Shawcross, Martin Bridson and James Sparks with Fatos Ustek

Conrad Shawcross, James Sparks, Fatos Ustek
Further Information

Oxford Mathematics Public Lecture

Cascading Principles - Conrad Shawcross, Martin Bridson and James Sparks with Fatos Ustek

Thursday 23 February, 2023
5pm - 6.15pm Andrew Wiles Building, Mathematical Institute, Oxford

Cascading Principles is an exhibition of nearly 40 stunning, mathematically inspired sculptures which are living alongside the mathematicians that inspired them in the Andrew Wiles Building, home to Oxford Mathematics. In this 'lecture', chaired by exhibition curator Fatos Ustek, Conrad will talk about what motivates his work, and how the possibilities and uncertainties of science inform his art. In turn, mathematicians Martin Bridson and James Sparks will describe how a mathematician responds to art motivated by their subject. 

There will be an opportunity to view the exhibition from 4pm on the day of the lecture.

Conrad Shawcross specialises in mechanical sculptures based on philosophical and scientific ideas. He is the youngest living member of the Royal Academy of Arts. James Sparks is Professor of Mathematical Physics and Head of the Mathematical Institute in Oxford. Martin Bridson is Whitehead Professor of Pure Mathematics in Oxford and President of the Clay Mathematics Institute. Fatos Ustek is a curator and writer and a leading voice in contemporary art.

Please email @email to register.

The Oxford Mathematics Public Lectures and the Conrad Shawcross Exhibition are generously supported by XTX Markets.

Banner for lecture

Thu, 23 Feb 2023
16:00
L4

Upper bounds for moments of the Riemann zeta-function

Hung Bui
(University of Manchester)
Abstract

Assuming the Riemann Hypothesis, Soundararajan established almost sharp upper bounds for all positive moments of the Riemann zeta-function. This result was later improved by Harper, who proved upper bounds of the right order of magnitude. I will describe some of the ideas in their proofs, and then discuss recent joint work with Alexandra Florea, where we consider negative moments of the Riemann zeta-function. For example, we can obtain asymptotic formulas for negative moments when the shift in the zeta function is large enough, confirming a conjecture of Gonek.  We also obtain an upper bound for the average of the generalised Mobius function.

Thu, 23 Feb 2023

14:00 - 15:00
Lecture Room 3

The Bernstein-Gelfand-Gelfand machinery and applications

Kaibo Hu
Abstract

In this talk, we first review the de Rham complex and the finite element exterior calculus, a cohomological framework for structure-preserving discretisation of PDEs. From de Rham complexes, we derive other complexes with applications in elasticity, geometry and general relativity. The derivation, inspired by the Bernstein-Gelfand-Gelfand (BGG) construction, also provides a general machinery to establish results for tensor-valued problems (e.g., elasticity) from de Rham complexes (e.g., electromagnetism and fluid mechanics). We discuss some applications and progress in this direction, including mechanics models and the construction of bounded homotopy operators (Poincaré integrals) and finite elements.

 

Thu, 23 Feb 2023

14:00 - 15:00
L1

Flows around some soft corals

Laura Miller
(University of Arizona)
Further Information

 

Please note the change of time for this seminar at 2pm GMT.

Laura Miller is Professor of Mathematics. Her research group, 'investigate[s] changes in the fluid dynamic environment of organisms as they grow or shrink in size over evolutionary or developmental time.' (Taken from her group website here: https://sites.google.com/site/swimflypump/home?authuser=0)&nbsp;

Abstract

In this presentation, I will discuss the construction and results of numerical simulations quantifying flows around several species of soft corals. In the first project, the flows near the tentacles of xeniid soft corals are quantified for the first time. Their active pulsations are thought to enhance their symbionts' photosynthetic rates by up to an order of magnitude. These polyps are approximately 1 cm in diameter and pulse at frequencies between approximately 0.5 and 1 Hz. As a result, the frequency-based Reynolds number calculated using the tentacle length and pulse frequency is on the order of 10 and rapidly decays as with distance from the polyp. This introduces the question of how these corals minimize the reversibility of the flow and bring in new volumes of fluid during each pulse. We estimate the Péclet number of the bulk flow generated by the coral as being on the order of 100–1000 whereas the flow between the bristles of the tentacles is on the order of 10. This illustrates the importance of advective transport in removing oxygen waste. In the second project, the flows through the elaborate branching structures of gorgonian colonies are considered.  As water moves through the elaborate branches, it is slowed, and recirculation zones can form downstream of the colony. At the smaller scale, individual polyps that emerge from the branches expand their tentacles, further slowing the flow. At the smallest scale, the tentacles are covered in tiny pinnules where exchange occurs. We quantified the gap to diameter ratios for various gorgonians at the scale of the branches, the polyp tentacles and the pinnules. We then used computational fluid dynamics to determine the flow patterns at all three levels of branching. We quantified the leakiness between the branches, tentacles and pinnules over the biologically relevant range of Reynolds numbers and gap-to-diameter ratios, and found that the branches and tentacles can act as either leaky rakes or solid plates depending upon these dimensionless parameters. The pinnules, in contrast, mostly impede the flow. Using an agent-based modeling framework, we quantified plankton capture as a function of the gap-to diameter ratio of the branches and the Reynolds number. We found that the capture rate depends critically on both morphology and Reynolds number. 

Thu, 23 Feb 2023

13:00 - 14:00
L4

Failure of the CD condition in sub-Riemannian and sub-Finsler geometry

Mattia Magnabosco
(Hausdorff Center for Mathematics)
Abstract

The Lott-Sturm-Villani curvature-dimension condition CD(K,N) provides a synthetic notion for a metric measure space to have curvature bounded from below by K and dimension bounded from above by N. It was proved by Juillet that the CD(K,N) condition is not satisfied in a large class of sub-Riemannian manifolds, for every choice of the parameters K and N. In a joint work with Tommaso Rossi, we extended this result to the setting of almost-Riemannian manifolds and finally it was proved in full generality by Rizzi and Stefani. In this talk I present the ideas behind the different strategies, discussing in particular their possible adaptation to the sub-Finsler setting. Lastly I show how studying the validity of the CD condition in sub-Finsler Carnot groups could help in proving rectifiability of CD spaces.

Thu, 23 Feb 2023

12:00 - 13:00
L4

Ocean Modelling at the Met Office

Mike Bell
(Met Office Fellow in Ocean Dynamics)
Abstract

Mike will briefly describe the scope and shape of science within the Met Office and of his career there. He will also outline the coordination of the development of the NEMO ocean model, which he leads, and work to ensure the marine systems at the Met Office work efficiently on modern High Performance Computers (HPCs).  In the second half of the talk, Mike will focus on two of his current scientific interests: accurate calculation of horizontal pressure forces in models with steeply sloping coordinates; and dynamical interpretations of meridional overturning circulations and ocean heat uptake.

Wed, 22 Feb 2023

17:00 - 18:30
L4

On the uses and abuses of the history of mathematics

Nicolas Michel
(Bergische Universitaet Wuppertal)
Abstract

Mathematicians frequently present their own work in a diachronic fashion, e.g. by comparing their "modern" methods to those supposedly of the "Ancients," or by situating their latest theories as an "abstract" counterpart to more "classical" ones. The construction of such contrasts entangle mathematical labour and cultural life writ large. Indeed, it involves on the part of mathematicians the shaping up of correspondences between their technical achievements and intellectual discussions taking place on a much broader stage, such as those surrounding the concept of modernity, its relation to an imagined ancient past, or the characterisation of scientific progress as an increase in abstraction. This talk will explore the creation and use of such mathematical diachronies, the focus being on the works of Felix Klein, Hieronymus Zeuthen, and Hermann Schubert.