The tilting equivalence for perfectoid fields
Abstract
We begin with the Fontaine--Wintenberger isomorphism, which gives an example of an extension of Qp and of Fp((t)) with isomorphic absolute Galois groups. We explain how by trying to lift maps on mod p reductions one encounters Witt vectors. Next, by trying to apply the theory of Witt vectors to the two extensions, we encounter the idea of tilting. Perfectoid fields are then defined more-or-less so that tilting may be reversed. We indicate the proof of the tilting correspondence for perfectoid fields following the Witt vectors approach, classifying the untilts of a given characteristic p perfectoid field along the way. To end, we touch upon the Fargues--Fontaine curve and the geometrization of l-adic local Langlands as motivation for globalizing the tilting correspondence to perfectoid spaces.