Thu, 15 Oct 2015

16:00 - 17:00
L5

Sums of seven cubes

Samir Siksek
(University of Warwick)
Abstract

In 1851, Carl Jacobi made the experimental observation that all integers are sums of seven non-negative cubes, with precisely 17 exceptions, the largest of which is 454. Building on previous work by Maillet, Landau, Dickson, Linnik, Watson, Bombieri, Ramaré, Elkies and many others, we complete the proof of Jacobi's observation.

Thu, 15 Oct 2015

16:00 - 17:00
L3

Localized Patterns & Spatial Heterogeneitie

Arjen Doelman
(Leiden University)
Abstract

We consider the impact of spatial heterogeneities on the dynamics of 
localized patterns in systems of partial differential equations (in one 
spatial dimension). We will mostly focus on the most simple possible 
heterogeneity: a small jump-like defect that appears in models in which 
some parameters change in value as the spatial variable x crosses 
through a critical value -- which can be due to natural inhomogeneities, 
as is typically the case in ecological models, or can be imposed on the 
model for engineering purposes, as in Josephson junctions. Even such a 
small, simplified heterogeneity may have a crucial impact on the 
dynamics of the PDE. We will especially consider the effect of the 
heterogeneity on the existence of defect solutions, which boils down to 
finding heteroclinic (or homoclinic) orbits in an n-dimensional 
dynamical system in `time' x, for which the vector field for x > 0 
differs slightly from that for x < 0 (under the assumption that there is 
such an orbit in the homogeneous problem). Both the dimension of the 
problem and the nature of the linearized system near the limit points 
have a remarkably rich impact on the defect solutions. We complement the 
general approach by considering two explicit examples: a heterogeneous 
extended Fisher–Kolmogorov equation (n = 4) and a heterogeneous 
generalized FitzHugh–Nagumo system (n = 6).

Thu, 15 Oct 2015

12:00 - 13:00
L6

Global Nonlinear Stability of Minkowski Space for the Massless Einstein-Vlasov System

Martin Taylor
(University of Cambridge)
Abstract
Given an initial data set for the vacuum Einstein equations which is suitably close to that of Minkowski space, the monumental work of Christodoulou—Klainerman guarantees the corresponding solution exists globally and asymptotically approaches the Minkowski solution.  The aim of the talk is to put this theorem in context, emphasising the importance of the null condition, before briefly discussing a new result on the corresponding problem in the presence of massless matter described by the Vlasov equation.
Wed, 14 Oct 2015

17:00 - 18:30
L1

M C Escher - Artist, Mathematician, Man

Roger Penrose and Jon Chapman
(Oxford)
Abstract

Oxford Mathematics Public Lectures

MC Escher - Artist, Mathematician, Man 

Roger Penrose and Jon Chapman

This lecture has now sold out

The symbiosis between mathematics and art is personified by the relationship between Roger Penrose and the great Dutch graphic artist MC Escher. In this lecture Roger will give a personal perspective on Escher's work and his own relationship with the artist while Jon Chapman will demonstrate the mathematical imagination inherent in the work. 

The lecture will be preceded by a showing of the BBC 4 documentary on Escher presented by Sir Roger Penrose. Private Escher prints and artefacts will be on display outside the lecture theatre.

5pm

Lecture Theatre 1

Mathematical Institute

Andrew Wiles Building

Radcliffe Observatory Quarter

Woodstock Road

OX2 6GG

 

Roger Penrose is Emeritus Rouse Ball Professor at the Mathematical Institute in Oxford

 

Jon Chapman is Statutory Professor of Mathematics and Its Applications at the Mathematical Institute in Oxford

Wed, 14 Oct 2015
16:00
C2

tba

Robin Knight
(Oxford)
Wed, 14 Oct 2015
15:00
L4

The impact of quantum computing on cryptography

Steve Brierley
(University of Cambridge)
Abstract

This is an exciting time to study quantum algorithms. As the technological challenges of building a quantum computer continue to be met there is still much to learn about the power of quantum computing. Understanding which problems a quantum computer could solve faster than a classical device and which problems remain hard is particularly relevant to cryptography. We would like to design schemes that are secure against an adversary with a quantum computer. I'll give an overview of the quantum computing that is accessible to a general audience and use a recently declassified project called "soliloquy" as a case study for the development (and breaking) of post-quantum cryptography.

Wed, 14 Oct 2015

11:00 - 12:30
N3.12

Properties of random groups.

Rob Kropholler
(Oxford)
Abstract

Many people talk about properties that you would expect of a group. When they say this they are considering random groups, I will define what it means to pick a random group in one of many models and will give some properties that these groups will have with overwhelming probability. I will look at the proof of some of these results although the talk will mainly avoid proving things rigorously.

Wed, 14 Oct 2015

10:00 - 11:00
L4

Center of quiver Hecke algebras and cohomology of quiver varieties

Prof. Peng Shan
Abstract

I will explain how to relate the center of a cyclotomic quiver Hecke algebras to the cohomology of Nakajima quiver varieties using a current algebra action. This is a joint work with M. Varagnolo and E. Vasserot.
 

Tue, 13 Oct 2015
16:30
L6

Unconditional hardness results and a tricky coin weighing puzzle

Raphaël Clifford
(University of Bristol)
Abstract

It has become possible in recent years to provide unconditional lower bounds on the time needed to perform a number of basic computational operations. I will briefly discuss some of the main techniques involved and show how one in particular, the information transfer method, can be exploited to give  time lower bounds for computation on streaming data.

I will then go on to present a simple looking mathematical conjecture with a probabilistic combinatorics flavour that derives from this work.  The conjecture is related to the classic "coin weighing with a spring scale" puzzle but has so far resisted our best efforts at resolution.

Tue, 13 Oct 2015

15:45 - 16:45
L4

D-modules from the b-function and Hamiltonian flow

Travis Schedler
(Imperial College London)
Abstract

Given a hypersurface, the Bernstein-Sato polynomial gives deep information about its singularities.  It is defined by a D-module (the algebraic formalism of differential equations) closely related to analytic continuation of the gamma function. On the other hand, given a hypersurface (in a Calabi-Yau variety) one can also consider the Hamiltonian flow by divergence-free vector fields, which also defines a D-module considered by Etingof and myself. I will explain how, in the case of quasihomogeneous hypersurfaces with isolated singularities, the two actually coincide. As a consequence I affirmatively answer a folklore question (to which M. Saito recently found a counterexample in the non-quasihomogeneous case): if c$ is a root of the b-function, is the D-module D f^c / D f^{c+1} nonzero? We also compute this D-module, and for c=-1 its length is one more than the genus (conjecturally in the non-quasihomogenous case), matching an analogous D-module in characteristic p. This is joint work with Bitoun.
 

Tue, 13 Oct 2015
14:30
L6

Rainbow Connectivity

Nina Kamčev
(ETH Zurich)
Abstract

An edge (vertex) coloured graph is rainbow-connected if there is a rainbow path between any two vertices, i.e. a path all of whose edges (internal vertices) carry distinct colours. Rainbow edge (vertex) connectivity of a graph G is the smallest number of colours needed for a rainbow edge (vertex) colouring of G. We propose a very simple approach to studying rainbow connectivity in graphs. Using this idea, we give a unified proof of several new and known results, focusing on random regular graphs. This is joint work with Michael Krivelevich and Benny Sudakov.

Tue, 13 Oct 2015

14:15 - 15:15
L4

CANCELLED!

Stefan Witzel
(Bielefeld)
Abstract

 If $R = F_q[t]$ is the polynomial ring over a finite field
then the group $SL_2(R)$ is not finitely generated. The group $SL_3(R)$ is
finitely generated but not finitely presented, while $SL_4(R)$ is
finitely presented. These examples are facets of a larger picture that
I will talk about.

Mon, 12 Oct 2015
15:45
L6

Fixed Point Properties and Proper Actions on Non-positively Curved Spaces and on Banach Spaces

Cornelia Drutu
(Oxford)
Abstract

One way of understanding groups is by investigating their actions on special spaces, such as Hilbert and Banach spaces, non-positively curved spaces etc. Classical properties like Kazhdan property (T) and the Haagerup property are formulated in terms of such actions and turn out to be relevant in a wide range of areas, from the conjectures of Baum-Connes and Novikov to constructions of expanders. In this talk I shall overview various generalisations of property (T) and Haagerup to Banach spaces, especially in connection with classes of groups acting on non-positively curved spaces.

Mon, 12 Oct 2015

12:00 - 13:00
L5

Supersymmetric Defects in 3d/3d

Masahito Yamazaki
(IPMU)
Abstract

The 3d/3d correspondence is about the correspondence between 3d N=2 supersymmetric gauge theories and the 3d complex Chern-Simons theory on a 3-manifold.

In this talk I will describe codimension 2 and 4 supersymmetric defects in this correspondence, by a combination of various existing techniques, such as state-integral models, cluster algebras, holographic dual, and 5d SYM.

 
 
 
Fri, 09 Oct 2015
14:15
C3

Spatial localization in temperature-dependent viscosity convection

Slava Solomatov
(Washington University in St Louis)
Abstract

Studies of thermal convection in planetary interiors have largely focused on convection above the critical Rayleigh number. However, convection in planetary mantles and crusts can also occur under subcritical conditions. Subcritical convection exhibits phenomena which do not exist above the critical Rayleigh number. One such phenomenon is spatial localization characterized by the formation of stable, spatially isolated convective cells. Spatial localization occurs in a broad range of viscosity laws including temperature-dependent viscosity and power-law viscosity and may explain formation of some surface features observed on rocky and icy bodies in the Solar System.

Thu, 08 Oct 2015

14:00 - 15:00
L4

Randomized iterative methods for linear systems

Dr Peter Richtárik
(Edinburgh University)
Abstract

We develop a novel, fundamental and surprisingly simple randomized iterative method for solving consistent linear systems. Our method has six different but equivalent interpretations: sketch-and-project, constrain-and-approximate, random intersect, random linear solve, random update and random fixed point. By varying its two parameters—a positive definite matrix (defining geometry), and a random matrix (sampled in an i.i.d. fashion in each iteration)—we recover a comprehensive array of well known algorithms as special cases, including the randomized Kaczmarz method, randomized Newton method, randomized coordinate descent method and random Gaussian pursuit. We naturally also obtain variants of all these methods using blocks and importance sampling. However, our method allows for a much wider selection of these two parameters, which leads to a number of new specific methods. We prove exponential convergence of the expected norm of the error in a single theorem, from which existing complexity results for known variants can be obtained. However, we also give an exact formula for the evolution of the expected iterates, which allows us to give lower bounds on the convergence rate. 

This is joint work with Robert M. Gower (Edinburgh).
Mon, 05 Oct 2015
15:45
L6

Quasicircles

Yves Benoist
(Université Paris XI, ORSAY)
Abstract

If you do not know quasicircles, you will understand what they are.
If you hate quasicircles, you will change your mind.
If you already love quasicircles, they will astonish you once more.

Thu, 01 Oct 2015

17:00 - 18:00
L1

Dancing Vortices

Étienne Ghys
(Ecole Normale Superieure, Lyons)
Abstract
Oxford Mathematics Public Lectures
 
This lecture has now sold out
 
There will be a special public lecture at 5pm on October 1 in the Andrew Wiles Building at Oxford University, during the week of the Clay Mathematics Institute’s annual Research Conference.  The lecture will be given in English by the French Mathematician Étienne Ghys and will be designed for A-level students (and above). After the lecture, Professor Ghys will be presented with the first Clay Award for the Dissemination of Mathematical Knowledge.
 
Abstract 
Nineteenth century observations of the behaviour of smoke rings and fluid vortices inspired an ingenious but misconceived model of the atom, a flawed proposal that nonetheless gave birth to the modern theory of knots. The chain of ideas has now come full circle with recent theoretical and experimental results on the existence of knotted vortices.
 
Clay Award for Dissemination 

The first Clay Award for Dissemination of Mathematical Knowledge has been made to Étienne Ghys in recognition of his own important contributions to mathematical research and for his distinguished work in the promotion of mathematics. 

Étienne Ghys  is a CNRS Directeur de Recherche at ENS, Lyon.  He has published outstanding  work in his own fields of geometry and dynamics,  both under his own name and under the collaborative pseudonym “Henri Paul de Saint Gervais”—contributions recognised by invitations to speak at the International Congress in 1990 and by his elevation to the French Académie des Sciences in 2004.  He has also given invaluable service to the international mathematical community in many contexts, as a member of the program committee for the ICM in Hyderabad, as a member of the Fields Medal committee in 2014, and through service on many other bodies. 

But it  is through his work in the promotion of mathematics in France and elsewhere that he has become a legend.  He has given numerous carefully crafted lectures to audiences ranging from school children to delegates at the International Congress in 2006, when he gave a beautiful and exceptionally clear plenary lecture on Knots and dynamics.  He has enthusiastically embraced modern technology to aid the exposition of deep ideas, for example during his editorship of Images des mathématiques, which he transformed to an online publication in 2009, and which received more than five million visits over his five-year term of office. He himself has written more than 90 articles for Images, as well as a monthly column in Le Monde.  

He created with others the Maison de mathématiques et informatique  in Lyon and co-founded, with Dierk Schleicher, the International summer school of mathematics for young students. His series of films, produced with Aurélien Alvarez and Jos Leys and published as DVDs and online in many languages, has had a huge impact on high school students.  The first, Dimensionshas been downloaded more than a million times.

 

Fri, 18 Sep 2015
14:00
L4

Post-Snowden Cryptography

Adi Shamir
(Weizmann Institute)
Abstract

Recently, a series of unprecedented leaks by Edward Snowden had made it possible for the first time to get a glimpse into the actual capabilities and limitations of the techniques used by the NSA and GCHQ to eavesdrop to computers and other communication devices. In this talk, I will survey some of the things we have learned, and discuss possible countermeasures against these capabilities.

Wed, 22 Jul 2015
12:00
L5

Einstein Metrics, Harmonic Forms, and Symplectic Manifolds.

Claude LeBrun
(Stonybrook)
Abstract
Given a smooth compact 4-manifold M  which admits Einstein metrics, is its moduli space of Einstein metrics connected?  While the corresponding question in higher dimensions typically has a negative answer, there are interesting 4-manifolds M for which the answer is known to be affirmative. One important class of 4-manifolds for which we do not know the answer, however,  consists of the underlying 4-manifolds of the del Pezzo surfaces. In this lecture, I will explain a  result which provides interesting partial information concerning this case. 
Mon, 29 Jun 2015
15:45
L6

On Unoriented Topological Conformal Field Theories

Ramses Fernandez-Valencia
(Oxford)
Abstract

We give a classification of open Klein topological conformal field theories in terms of Calabi-Yau $A_\infty$-categories endowed with an involution. Given an open Klein topological conformal field theory, there is a universal open-closed extension whose closed part is the involutive version of the Hochschild chains associated to the open part.

Mon, 29 Jun 2015
00:00

tba

Dharmanand Baboolal
(Durban)
Tue, 23 Jun 2015

17:00 - 18:00
L6

Almost small absolute Galois groups

Arno Fehm
(Konstanz)
Abstract

Already Serre's "Cohomologie Galoisienne" contains an exercise regarding the following condition on a field F: For every finite field extension E of F and every n, the index of the n-th powers (E*)^n in the multiplicative group E* is finite. Model theorists recently got interested in this condition, as it is satisfied by every superrosy field and also by every strongly2 dependent field, and occurs in a conjecture of Shelah-Hasson on NIP fields. I will explain how it relates to the better known condition that F is bounded (i.e. F has only finitely many extensions of degree n, for any n - in other words, the absolute Galois group of F is a small profinite group) and why it is not preserved under elementary equivalence. Joint work with Franziska Jahnke.

*** Note unusual day and time ***

Tue, 23 Jun 2015

15:30 - 16:30
L1

Analytic and Arithmetic Geometry Workshop: Quasi-abelian categories in analytic geometry

Federico Bambozzi
(University of Regensburg)
Abstract

I will describe a categorical approach to analytic geometry using the theory of quasi-abelian closed symmetric monoidal categories which works both for Archimedean and non-Archimdedean base fields. In particular I will show how the weak G-topologies of (dagger) affinoid subdomains can be characterized by homological method. I will end by briefly saying how to generalize these results for characterizing open embeddings of Stein spaces. This project is a collaboration with Oren Ben-Bassat and Kobi Kremnizer.

Tue, 23 Jun 2015

14:00 - 15:00
L1

Analytic and Arithmetic Geometry Workshop: Overconvergent global analytic geometry

Frederic Paugam
(Institut de Mathématiques de Jussieu (Paris 7))
Abstract

We will discuss our approach to global analytic geometry, based on overconvergent power series and functors of functions. We will explain how slight modifications of it allow us to develop a derived version of global analytic geometry. We will finish by discussing applications to the cohomological study of arithmetic varieties.

Tue, 23 Jun 2015

10:00 - 11:00
L1

Analytic and Arithmetic Geometry Workshop: Variations on quadratic Chabauty

Jennifer Balakrishnan
(Oxford University)
Abstract

We describe how p-adic height pairings allow us to find integral points on hyperelliptic curves, in the spirit of Kim's nonabelian Chabauty program. In particular, we discuss how to carry out this ``quadratic Chabauty'' method over quadratic number fields (joint work with Amnon Besser and Steffen Mueller) and present related ideas to find rational points on bielliptic genus 2 curves (joint work with Netan Dogra).

Fri, 19 Jun 2015
17:30
L2

Social Capital and Microfinance

Esther Duflo
(MIT)
Abstract
This talk will review the literature on the interaction between social capital and microfinance: how microfinance adoption diffuses through the social network, how its functioning leverages existing links and strengthen some links while weakening others
Fri, 19 Jun 2015

16:00 - 17:00
L1

The Shape of Data

Gunnar Carlsson
(Stanford University)
Abstract

There has been a great deal of attention paid to "Big Data" over the last few years.  However, often as not, the problem with the analysis of data is not as much the size as the complexity of the data.  Even very small data sets can exhibit substantial complexity.  There is therefore a need for methods for representing complex data sets, beyond the usual linear or even polynomial models.  The mathematical notion of shape, encoded in a metric, provides a very useful way to represent complex data sets.  On the other hand, Topology is the mathematical sub discipline which concerns itself with studying shape, in all dimensions.  In recent years, methods from topology have been adapted to the study of data sets, i.e. finite metric spaces.  In this talk, we will discuss what has been
done in this direction and what the future might hold, with numerous examples.

Fri, 19 Jun 2015

14:00 - 15:00
L5

Biological Simulation – from simple cells to multiscale frameworks

Dr Dawn Walker
(Dept of Bioengineering University of Sheffield)
Abstract

As the fundamental unit of life, the biological cell is a natural focus for computational simulations of growing cell population and tissues. However, models developed at the cellular scale can also be integrated into more complex multiscale models in order to examine complex biological and physical process that scan scales from the molecule to the organ.

This seminar will present a selection of the cellular scale agent-based modelling that has taken place at the University of Sheffield (where one software agent represents one biological cell) and how such models can be used to examine collective behaviour in cellular systems. Finally some of the issues in extending to multiscale models and the theoretical and computational methodologies being developed in Sheffield and by the wider community in this area will be presented.

Fri, 19 Jun 2015
11:30
L5

iceCAM project with G's-Fresh

Alasdair Craighead
(G's-Fresh)
Abstract

G’s Growers supply salad and vegetable crops throughout the UK and Europe; primarily as a direct supplier to supermarkets. We are currently working on a project to improve the availability of Iceberg Lettuce throughout the year as this has historically been a very volatile crop. It is also by far the highest volume crop that we produce with typical weekly sales in the summer season being about 3m heads per week.

In order to continue to grow our business we must maintain continuous supply to the supermarkets. Our current method for achieving this is to grow more crop than we will actually harvest. We then aim to use the wholesale markets to sell the extra crop that is grown rather than ploughing it back in and then we reduce availability to these markets when the availability is tight.

We currently use a relatively simple computer Heat Unit model to help predict availability however we know that this is not the full picture. In order to try to help improve our position we have started the IceCAM project (Iceberg Crop Adaptive Model) which has 3 aims.

  1. Forecast crop availability spikes and troughs and use this to have better planting programmes from the start of the season.
  2. Identify the growth stages of Iceberg to measure more accurately whether crop is ahead or behind expectation when it is physically examined in the field.
  3. The final utopian aim would be to match the market so that in times of general shortage when price are high we have sufficient crop to meet all of our supermarket customer requirements and still have spare to sell onto the markets to benefit from the higher prices. Equally when there is a general surplus we would only look to have sufficient to supply the primary customer base.

We believe that statistical mathematics can help us to solve these problems!!

Fri, 19 Jun 2015

10:00 - 11:00
L5

Toward a Higher-Order Accurate Computational Flume Facility for Understanding Wave-Current-Structure Interaction

Chris Kees
(USAERDC)
Abstract

Accurate simulation of coastal and hydraulic structures is challenging due to a range of complex processes such as turbulent air-water flow and breaking waves. Many engineering studies are based on scale models in laboratory flumes, which are often expensive and insufficient for fully exploring these complex processes. To extend the physical laboratory facility, the US Army Engineer Research and Development Center has developed a computational flume capability for this class of problems. I will discuss the turbulent air-water flow model equations, which govern the computational flume, and the order-independent, unstructured finite element discretization on which our implementation is based. Results from our air-water verification and validation test set, which is being developed along with the computational flume, demonstrate the ability of the computational flume to predict the target phenomena, but the test results and our experience developing the computational flume suggest that significant improvements in accuracy, efficiency, and robustness may be obtained by incorporating recent improvements in numerical methods.

Key Words:

Multiphase flow, Navier-Stokes, level set methods, finite element methods, water waves

Thu, 18 Jun 2015

17:30 - 18:30
L6

On the Consistency Problem for Quine's New Foundations, NF

Peter Aczel
(Manchester)
Abstract

In 1937 Quine introduced an interesting, rather unusual, set theory called New Foundations - NF for short.  Since then the consistency of NF has been a problem that remains open today.  But there has been considerable progress in our understanding of the problem. In particular NF was shown, by Specker in 1962, to be equiconsistent with a certain theory, TST^+ of simple types. Moreover Randall Holmes, who has been a long-term investigator of the problem, claims to have  solved the problem by showing that TST^+ is indeed consistent.  But the working manuscripts available on his web page that describe his possible proofs are not easy to understand - at least not by me.

 
In my talk I will introduce TST^+ and its possible models and discuss some of the interesting ideas, that I have understood, that Holmes uses in one of his possible proofs.  If there is time in my talk I will also mention a more recent approach of Jamie Gabbay who is taking a nominal sets approach to the problem.
Thu, 18 Jun 2015

17:00 - 18:00
L2

TheLMS Hardy Lecture: The famous inverse scattering transform method and its less famous discrete version

Prof Nalini Joshi
(University of Sydney)
Abstract

Abstract: The simplest solutions of integrable systems are special functions that have been known since the time of Newton, Gauss and Euler. These functions satisfy not only differential equations as functions of their independent variable but also difference equations as functions of their parameter(s).  We show how the inverse scattering transform method, which was invented to solve the Korteweg-de Vries equation, can be extended to its discrete version.

S.Butler and N.Joshi, An inverse scattering transform for the lattice potential KdV equation, Inverse Problems 26 (2010) 115012 (28pp)

Thu, 18 Jun 2015

16:00 - 17:00
L1

Nomura-OMI Seminar: Optimal exit under moral hazard

Prof. Stephane Villeneuve
(University of Toulouse)
Abstract

We revisit the optimal exit problem by adding a moral hazard problem where a firm owner contracts out with an agent to run a project. We analyse the optimal contracting problem between the owner and the agent in a Brownian framework, when the latter modifies the project cash-flows with an hidden action. The analysis leads to the resolution of a constrained optimal stopping problem that we solve explicitly.

Thu, 18 Jun 2015

16:00 - 17:00
L3

Spatial Efficiency of Complex Networks

Prof. Ernesto Estrada
(Strathclyde)
Abstract

Although not all complex networks are embedded into physical spaces, it is possible to find an abstract Euclidean space in which they are embedded. This Euclidean space naturally arises from the use of the concept of network communicability. In this talk I will introduce the basic concepts of communicability, communicability distance and communicability angles. Both, analytic and computational evidences will be provided that shows that the average communicability angle represents a measure of the spatial efficiency of a network. We will see how this abstract spatial efficiency is related to the real-world efficiency with which networks uses the available physical space for classes of networks embedded into physical spaces. More interesting, we will show how this abstract concept give important insights about properties of networks not embedded in physical spaces.

Thu, 18 Jun 2015
15:00
L4

'Law in mathematics and mathematics in law: probability theory and the fair price in contracts in England and France 1700-1850'

Dr Ciara Kennefick
Abstract

Law in mathematics and mathematics in law: Probability theory and the fair price in contracts in England and France 1700–1850

From the middle of the eighteenth century, references to mathematicians such as Edmond Halley and Abraham De Moivre begin to appear in judgments in English courts on the law of contract and French mathematicians such as Antoine Deparcieux and Emmanuel-Etienne Duvillard de Durand are mentioned in French treatises on contract law in the first half of the nineteenth century. In books on the then nascent subject of probability at the beginning of the eighteenth century, discussions of legal problems and principally contracts, are especially prominent. Nicolas Bernoulli’s thesis at Basle in 1705 on The Use of the Art of Conjecturing in Law was aptly called a Dissertatio Inauguralis Matematico-Juridica. In England, twenty years later, De Moivre dedicated one of his books on probability to the Lord Chancellor, Lord Macclesfield and expressly referred to its significance for contract law.

The objective of this paper is to highlight this textual interaction between law and mathematics and consider its significance for both disciplines but primarily for law. Probability was an applied science before it became theoretical. Legal problems, particularly those raised by the law of contract, were one of the most frequent applications and as such played an essential role in the development of this subject from its inception. In law, probability was particularly important in contracts. The idea that exchanges must be fair, that what one receives must be the just price for what one gives, has had a significant influence on European contract law since the Middle Ages. Probability theory allowed, for the first time, such an idea to be applied to the sale of interests which began or terminated on the death of certain people. These interests, particularly reversionary interests in land and personal property in English law and rentes viagères in French law were very common in practice at this time. This paper will consider the surprising and very different practical effects of these mathematical texts on English and French contract law especially during their formative period in the late eighteenth and nineteenth centuries.

Thu, 18 Jun 2015

14:00 - 15:00
L5

Linear Algebra for Matrix-Free Optimization

Dominique Orban
(École Polytechnique Montréal)
Abstract

When formulated appropriately, the broad families of sequential quadratic programming, augmented Lagrangian and interior-point methods all require the solution of symmetric saddle-point linear systems. When regularization is employed, the systems become symmetric and quasi definite. The latter are
indefinite but their rich structure and strong relationships with definite systems enable specialized linear algebra, and make them prime candidates for matrix-free implementations of optimization methods. In this talk, I explore various formulations of the step equations in optimization and corresponding
iterative methods that exploit their structure.