Fri, 21 Oct 2016

16:00 - 17:00
L1

Talking to your audience

Professor Jon Chapman
(Mathematical Institute, Oxford)
Abstract

How might you prepare talks for different audiences (specialised seminar, colloquium-style talk, talk to a non-mathematical audience, job interview)?  Join us for advice on this, and on how to connect with your audience and get them to feel involved.

Fri, 21 Oct 2016

13:00 - 14:00
L6

Data driven nonlinear expectations for statistical robustness

Sam Cohen
(Mathematical Institute)
Abstract

In practice, stochastic decision problems are often based on statistical estimates of probabilities. We all know that statistical error may be significant, but it is often not so clear how to incorporate it into our decision making. In this informal talk, we will look at one approach to this problem, based on the theory of nonlinear expectations. We will consider the large-sample theory of these estimators, and also connections to `robust statistics' in the sense of Huber.

Thu, 20 Oct 2016
16:00
L6

An Arithmetic Chern-Simons Invariant

Minhyong Kim
(Oxford)
Abstract

Abstract: We will recall some analogies between structures arising from three-manifold topology and rings of integers in number fields. This can be used to define a Chern-Simons functional on spaces of Galois representations.  Some sample computations and elementary applications will be shown.

Thu, 20 Oct 2016

16:00 - 17:30
L4

Geometry of distribution constraint optimal stopping problems

Mathias Beiglboeck
(TU Wien)
Abstract

We show how to adapt methods originally developed in
model-independent finance / martingale optimal transport to give a
geometric description of optimal stopping times tau of Brownian Motion
subject to the constraint that the distribution of tau is a given
distribution. The methods work for a large class of cost processes.
(At a minimum we need the cost process to be adapted. Continuity
assumptions can be used to guarantee existence of solutions.) We find
that for many of the cost processes one can come up with, the solution
is given by the first hitting time of a barrier in a suitable phase
space. As a by-product we thus recover Anulova's classical solution of
the inverse first passage time problem.

Thu, 20 Oct 2016

16:00 - 17:00
L3

From the Molecular to the Reactor Scale with Accurate and Efficient Computational Frameworks for Reaction Kinetics

Michail Stamatakis
(UCL)
Abstract

Modelling catalytic kinetics is indispensable for the design of reactors and chemical processes. However, developing accurate and computationally efficient kinetic models remains challenging. Empirical kinetic models incorporate assumptions about rate-limiting steps and may thus not be applicable to operating regimes far from those where they were derived. Detailed microkinetic modelling approaches overcome this issue by accounting for all elementary steps of a reaction mechanism. However, the majority of such kinetic models employ mean-field approximations and are formulated as ordinary differential equations, which neglect spatial correlations. On the other hand, kinetic Monte Carlo (KMC) approaches provide a discrete-space continuous-time stochastic formulation that enables a detailed treatment of spatial correlations in the adlayer (resulting for instance from adsorbate-adsorbate lateral interactions), but at a significant computation expense.1,2

Motivated by these challenges, we discuss the necessity of KMC descriptions that incorporate detailed models of lateral interactions. Focusing on a titration experiment involving the oxidation of pre-adsorbed O by CO gas on Pd(111), we discuss experimental findings that show first order kinetics at low temperature (190 K) and half order kinetics at high temperature (320 K), the latter previously attributed to island formation.3 We perform KMC simulations whereby coverage effects on reaction barriers are captured by cluster expansion Hamiltonians and Brønsted-Evans-Polanyi (BEP) relations.4 By quantifying the effect of adlayer structure versus coverage effects on the observed kinetics, we rationalise the experimentally observed kinetics. We show that coverage effects lead to the half order kinetics at 320 K, rather than O-island formation as previously thought.5,6

Subsequently, we discuss our ongoing work in the development of approximations that capture such coverage effects but are much more computationally efficient than KMC, making it possible to use such models in reactor design. We focus on a model for NO oxidation incorporating first nearest neighbour lateral interactions and construct a sequence of approximations of progressively higher accuracy, starting from the mean-field treatment and continuing with a sequence of Bethe-Peierls models with increasing cluster sizes. By comparing the turnover frequencies of these models with those obtained from KMC simulation, we show that the mean-field predictions deviate by several orders of magnitude from the KMC results, whereas the Bethe-Peierls models exhibit progressively higher accuracy as the size of the explicitly treated cluster increases. While more computationally intensive than mean-field, these models still enable significant computational savings compared to a KMC simulation, thereby paving the road for employing them in multiscale modelling frameworks.

References

1    M. Stamatakis and D. G. Vlachos, ACS Catal. 2 (12), 2648 (2012).

2    M. Stamatakis, J Phys-Condens Mat 27 (1), 013001 (2015).

3    I. Nakai, H. Kondoh, T. Shimada, A. Resta, J. N. Andersen, and T. Ohta, J. Chem. Phys. 124 (22), 224712 (2006).

4    J. Nielsen, M. d’Avezac, J. Hetherington, and M. Stamatakis, J. Chem. Phys. 139 (22), 224706 (2013).

5    M. Stamatakis and S. Piccinin, ACS Catal. 6 (3), 2105 (2016).

6    S. Piccinin and M. Stamatakis, ACS Catal. 4, 2143 (2014).

Thu, 20 Oct 2016

14:00 - 15:00
L5

Parallelization of the rational Arnoldi algorithm

Dr. Stefan Guettel
(Manchester University)
Abstract


Rational Krylov methods are applicable to a wide range of scientific computing problems, and ​the rational Arnoldi algorithm is a commonly used procedure for computing an ​orthonormal basis of a rational Krylov space. Typically, the computationally most expensive component of this​ ​algorithm is the solution of a large linear system of equations at each iteration. We explore the​ ​option of solving several linear systems simultaneously, thus constructing the rational Krylov​ ​basis in parallel. If this is not done carefully, the basis being orthogonalized may become badly​ ​conditioned, leading to numerical instabilities in the orthogonalization process. We introduce the​ ​new concept of continuation pairs which gives rise to a near-optimal parallelization strategy that ​allows to control the growth of the condition number of this nonorthogonal basis. As a consequence we obtain a significantly more accurate and reliable parallel rational Arnoldi algorithm.
​ ​
The computational benefits are illustrated using several numerical examples from different application areas.
​ ​
This ​talk is based on joint work with Mario Berljafa  available as an Eprint at http://eprints.ma.man.ac.uk/2503/
 

Thu, 20 Oct 2016
12:00
L5

Long-time existence for Yang-Mills flow

Alex Waldron
(Stony Brook University)
Abstract

I'll discuss the problem of controlling energy concentration in YM flow over a four-manifold. Based on a study of the rotationally symmetric case, it was conjectured in 1997 that bubbling can only occur at infinite time. My thesis contained some strong elementary results on this problem, which I've now solved in full generality by a more involved method.

Wed, 19 Oct 2016

16:00 - 17:00
C1

Kähler groups, residually free groups and subgroups of direct products of surface groups.

Claudio Llosa Isenrich
(Oxford University)
Abstract

A Kähler group is a group which can be realised as the fundamental group of a close Kähler manifold. We will prove that for a Kähler group $G$ we have that $G$ is residually free if and only if $G$ is a full subdirect product of a free abelian group and finitely many closed hyperbolic surface groups. We will then address Delzant-Gromov's question of which subgroups of direct products of surface groups are Kähler: We explain how to construct subgroups of direct products of surface groups which have even first Betti number but are not Kähler. All relevant notions will be explained in the talk.

Wed, 19 Oct 2016
15:00
L5

Cryptanalysis of the Algebraic Eraser

Simon Blackburn
(Royal Holloway University of London)
Abstract

The Algebraic Eraser is a cryptosystem (more precisely, a class of key
agreement schemes) introduced by Anshel, Anshel, Goldfeld and Lemieux
about 10 years ago. There is a concrete instantiation of the Algebraic
Eraser called the Colored Burau Key Agreement Protocol (CBKAP), which
uses a blend of techniques from permutation groups, matrix groups and
braid groups. SecureRF, the company owning the trademark to the
Algebraic Eraser, is marketing this system for lightweight
environments such as RFID tags and other Internet of Things
applications; they have proposed making this scheme the basis for an
ISO RFID standard.

This talk gives an introduction to the Algebraic Eraser, a brief
history of the attacks on this scheme using ideas from group-theoretic
cryptography, and describes the countermeasures that have been
proposed. I would not recommend the scheme for the proposed
applications: the talk ends with a brief sketch of a recent convincing
cryptanalysis of this scheme due to Ben-Zvi, Blackburn and Tsaban
(which appeared at CRYPTO this summer), and significant attacks
on the protocol in the proposed ISO standard due to Blackburn and
Robshaw (which appeared at ACNS earlier this year).

Tue, 18 Oct 2016
15:45
L4

Separating invariants and local cohomology

Emilie DuFresne
(Oxford)
Abstract

The study of separating invariants is a new trend in Invariant Theory and a return to its roots: invariants as a classification tool. For a finite group acting linearly on a vector space, a separating set is simply a set of invariants whose elements separate the orbits o the action. Such a set need not generate the ring of invariants. In this talk, we give lower bounds on the size of separating sets based on the geometry of the action. These results are obtained via the study of the local cohomology with support at an arrangement of linear subspaces naturally arising from the action.

(Joint with Jack Jeffries)

Tue, 18 Oct 2016
14:30
L6

Component sizes in random graphs with given vertex degrees

Svante Janson
(Uppsala University)
Abstract

The threshold for existence of a giant component in a random graph with given vertex degrees was found by Molloy and Reed (1995), and several authors have since studied the size of the largest and other components in various cases. The critical window was found by Hatami and Molloy (2012), and has a width that depends on whether the asymptotic degree distribution has a finite third moment or not. I will describe some new results (joint work with Remco van der Hofstad and Malwina Luczak) on the barely supercritical case, where this difference between finite and infinite third moment also is seen.

Tue, 18 Oct 2016
14:30
L5

Multi-index methods for quadrature

Abdul Haji-Ali
(Mathematical Institute)
Abstract


Multi-index methods are a generalization of multilevel methods in high dimensional problem and are based on taking mixed first-order differences along all dimensions. With these methods, we can accurately and efficiently compute a quadrature or construct an interpolation where the integrand requires some form of high dimensional discretization. Multi-index methods are related to Sparse Grid methods and the Combination Technique and have been applied to multiple sampling methods, i.e., Monte Carlo, Stochastic Collocation and, more recently, Quasi Monte Carlo.

In this talk, we describe and analyse the Multi-Index Monte Carlo (MIMC) and Multi-Index Stochastic Collocation (MISC) methods for computing statistics of the solution of a PDE with random data. Provided sufficient mixed regularity, MIMC and MISC achieve better complexity than their corresponding multilevel methods. We propose optimization procedures to select the most effective mixed differences to include in these multi-index methods. We also observe that in the optimal case, the convergence rate of MIMC and MISC is only dictated by the convergence of the deterministic solver applied to a one-dimensional spatial problem. We finally show the effectiveness of MIMC and MISC in some computational tests, including PDEs with random coefficients and Stochastic Particle Systems.
 

Tue, 18 Oct 2016

14:15 - 15:15
L4

Tensor diagrams and Chebyshev polynomials

Lisa Lamberti
(Oxford)
Abstract

Given a complex vector space $V$, consider the ring $R_{a,b}(V)$ of polynomial functions on the space of configurations of $a$ vectors and $b$ covectors which are invariant under the natural action of $SL(V)$. Rings of this type play a central role in representation theory, and their study dates back to Hilbert. Over the last three decades, different bases of these spaces with remarkable properties were found. To explicitly construct, as well as to compare, some of these bases remains a challenging problem, already open when $V$ is 3-dimensional. 
In this talk, I report on recent developments in the 3-dimensional setting of this theory.

Tue, 18 Oct 2016
14:00
L5

ODE IVPs and BVPs

Nick Trefethen
(Mathematical Institute)
Abstract

I will discuss some of the relationships between ODE IVPs, usually solved by marching, and ODE BVPs, usually solved by global discretizations.

Tue, 18 Oct 2016

12:45 - 13:30
C5

Scalable Two-Phase Flow Solvers

Niall Bootland
(University of Oxford)
Abstract

My research focuses on numerical techniques that help provide scalable computation within simulations of two-phase fluid flow problems. The efficient solution of the linear systems which arise is key to obtaining practical computation. I will motivate and discuss new methods which seek to generalise effective techniques for a single phase to the more challenging setting of two-phase flow where the governing equations have discontinuous coefficients.

Tue, 18 Oct 2016

12:00 - 13:15
L4

Critical exponents in the $\phi^4$ model

Mikhail Kompaniets
(St Petersburg State University)
Abstract

The $\phi^4$ model in statistical physics describes the
continous phase transition in the liquid-vapour system, transition to
the superfluid phase in helium, etc. Experimentally measured values in
this model are critical exponents and universal amplitude ratios.
These values can also be calculated in the framework of the
renormalization group approach. It turns out that the obtained series
are divergent asymptotic series, but it is possible to perform Borel
resummation of such a series. To make this procedure more accurate we
need as much terms of the expansion as possible.
The results of the recent six loop analitical calculations of the
anomalous dimensions, beta function and critical exponents of the
$O(N)$ symmetric $\phi^4$ model will be presented. Different technical
aspects of these calculations (IBP method, R* operation and parametric
integration in Feynman representation) will be discussed. The

numerical estimations of critical exponents obtained with Borel
resummation procedure are compared with experimental values and
results of Monte-Carlo simulations.

Mon, 17 Oct 2016

16:00 - 17:00
L4

The geometry of constant mean curvature surfaces in Euclidean space

Giuseppe Tinaglia
(King's College London)
Abstract

In this talk I will begin by reviewing classical geometric properties of constant mean curvature surfaces, H>0, in R^3. I will then talk about several more recent results for surfaces embedded in R^3 with constant mean curvature, such as curvature and radius estimates. Finally I will show applications of such estimates including a characterisation of the round sphere as the only simply-connected surface embedded in R^3 with constant mean curvature and area estimates for compact surfaces embedded in a flat torus with constant mean curvature and finite genus. This is joint work with Meeks.

Mon, 17 Oct 2016

15:45 - 16:45
L6

Physics in the homotopy category of L-infinity algebras

John Huerta
(UC Riverside)
Abstract


 In this introduction for topologists, we explain the role that extensions of L-infinity algebras by taking homotopy fibers plays in physics. This first appeared with the work of physicists D'Auria and Fre in 1982, but is beautifully captured by the "brane bouquet" of Fiorenza, Sati and Schreiber which shows how physical objects such as "strings", "D-branes" and "M-branes" can be classified by taking successive homotopy fibers of an especially simple L-infinity algebra called the "supertranslation algebra". We then conclude by describing our joint work with Schreiber where we build the brane bouquet out of the homotopy theory of an even simpler L-infinity algebra called the superpoint.

Mon, 17 Oct 2016

15:45 - 16:45
L3

Hopf Algebras in Regularity Structures.

YVAIN BRUNED
(Warwick University)
Abstract

The Regularity Structures introduced by Martin Hairer allow us to describe the solution of a singular SPDEs by a Taylor expansion with new monomials.  We present the two Hopf Algebras used in this theory for defining the structure group and the renormalisation group. We will point out the importance of recursive formulae with twisted antipodes.

Mon, 17 Oct 2016
14:15
L4

Invariant G_2-instantons

Jason Lotay
(UCL)
Abstract

Since Donaldson-Thomas proposed a programme for studying gauge theory in higher dimensions, there has
been significant interest in understanding special Yang-Mills connections in Ricci-flat 7-manifolds with holonomy
G_2 called G_2-instantons.  However, still relatively little is known about these connections, so we begin the
systematic study of G_2-instantons in the SU(2)^2-invariant setting.  We provide existence, non-existence and
classification results, and exhibit explicit sequences of G_2-instantons where “bubbling" and "removable
singularity" phenomena occur in the limit.  This is joint work with Goncalo Oliveira (Duke).

 

Mon, 17 Oct 2016

14:15 - 15:15
L3

Limiting behaviour of a signature

HORATIO BOEDIHARDJO
(Reading University)
Abstract

Signature of a path provides a top down summary of the path as a driving signal. There have been substantial recent progress in reconstructing paths from its signature, (Lyons-Xu 2016, Geng 2016). In this talk, we focus on obtaining certain quantitative features of paths from their signatures. Hambly-Lyons' showed that the normalized limit of signature gives the length of a C^3 path. The result was recently extended by Lyons-Xu to C^1 paths. The extension of this result to bounded variation paths remains open. We will discuss this open problem.