Mon, 14 Nov 2016
17:00
C1

“Knowledge gained by experience”: Olaus Henrici – engineer, geometer, and maker of mathematical models

June Barrow-Green
(The Open University)
Abstract

The (Danish-born) German mathematician Olaus Henrici (1840–1918) studied in Karlsruhe, Heidelberg and Berlin before making his career in London, first at University College and then, from 1884, at the newly formed Central Technical College where he established a Laboratory of Mechanics.  Although Henrici’s original training was as an engineer, he became known as a promoter of projective geometry and as an advocate for the use of mathematical models.  In my talk, I shall discuss the different aspects of Henrici's work and explore connections between them.

Mon, 14 Nov 2016

16:00 - 17:00
L4

Twisted X-Rays, Orbital Angular Momentum and the Determination of Atomic Structure

Richard James
(University of Minnesota)
Abstract

We find exact solutions of Maxwell's equations that are the precise analog of plane waves, but in the case that the translation group is replaced by the Abelian helical group. These waves display constructive/destructive interference with helical atomic structures, in the same way that plane waves interact with crystals. We show how the resulting far-field pattern can be used for structure determination. We test the method by doing theoretical structure determination on the Pf1 virus from the Protein Data Bank. The underlying mathematical idea is that the structure is the orbit of a group, and this group is a subgroup of the invariance group of the differential equations. Joint work with Dominik Juestel and Gero Friesecke. (Acta Crystallographica A72 and SIAM J. Appl Math).

Mon, 14 Nov 2016
15:45
L6

Some concordance invariants from knot Floer homology

Daniele Celoria
(Oxford)
Abstract

(Joint work with Marco Golla and József Bodnár)
We will give a general overview of the plethora of concordance invariants which can be extracted from Ozsváth-Szabó-Rasmussen's knot Floer homology. 
We will then focus on the $\nu^+$ invariant and prove some of its useful properties. 
Furthermore we will show how it can be used to obstruct the existence of cobordisms between algebraic knots.

Mon, 14 Nov 2016

15:45 - 16:45
L3

Rough path metrics on a Besov-Nikolskii type scale

DAVID PROEMEL
(ETH Zurich)
Abstract

One of the central results in rough path theory is the local Lipschitz continuity of the solution map of a controlled differential equation called Ito-Lyons map. This continuity statement was obtained by T. Lyons in a q-variation resp. 1/q-Hölder type (rough path) metrics for any regularity 1/q>0. We extend this to a new class of Besov-Nikolskii type metrics with arbitrary regularity 1/q and integrability p, which particularly covers the aforementioned results as special cases. This talk is based on a joint work with Peter K. Friz.

 

Mon, 14 Nov 2016
14:15
L4

Integrals and symplectic forms on infinitesimal quotients

Brent Pym
(Oxford)
Abstract

Title: Integrals and symplectic forms on infinitesimal quotients

Abstract: Lie algebroids are models for "infinitesimal actions" on manifolds: examples include Lie algebra actions, singular foliations, and Poisson brackets.  Typically, the orbit space of such an action is highly singular and non-Hausdorff (a stack), but good algebraic techniques have been developed for studying its geometry.  In particular, the orbit space has a formal tangent complex, so that it makes sense to talk about differential forms.  I will explain how this perspective sheds light on the differential geometry of shifted symplectic structures, and unifies a number of classical cohomological localization theorems.  The talk is
based mostly on joint work with Pavel Safronov.

 

Mon, 14 Nov 2016

14:15 - 15:15
L3

Tail index estimation, concentration, adaptation...

STEPHANE BOUCHERON
(Université Paris Diderot)
Abstract

This paper presents an adaptive version of the Hill estimator based on Lespki’s model selection method. This simple data-driven index selection method is shown to satisfy an oracle inequality and is checked to achieve the lower bound recently derived by Carpentier and Kim. In order to establish the oracle inequality, we derive non-asymptotic variance bounds and concentration inequalities for Hill estimators. These concentration inequalities are derived from Talagrand’s concentration inequality for smooth functions of independent exponentially distributed random variables combined with three tools of Extreme Value Theory: the quantile transform, Karamata’s representation of slowly varying functions, and Rényi’s characterisation for the order statistics of exponential samples. The performance of this computationally and conceptually simple method is illustrated using Monte-Carlo simulations.

http://projecteuclid.org/euclid.ejs/1450456321  (joint work with Maud Thomas)

Mon, 14 Nov 2016
12:45
L3

Monopoles, Vortices and Vermas

Mathew Bullimore
(Oxford)
Abstract

In 3d gauge theories, monopole operators create and destroy vortices. I will explore this idea in the context of 3d N = 4 supersymmetric gauge theories and explain how it leads to an exact calculation of quantum corrections to the Coulomb branch and a finite version of the AGT correspondence. 

 
Mon, 14 Nov 2016

12:00 - 13:00
C2

Occupants of Manifolds

Steffen Tillmann
(Muenster)
Abstract

I will report on joint work with Michael Weiss (https://arxiv.org/pdf/1503.00498.pdf):

Let K be a subset of a smooth manifold M. In some cases, functor calculus methods lead to a homotopical formula for M \ K in terms of the spaces M \ S,  where S runs through the finite subsets of K. This is for example the case when K is a smooth compact sub manifold of co-dimension greater or equal to three.

 

 

Fri, 11 Nov 2016

16:00 - 17:00
L1

Owning a successful DPhil

Abstract

Wondering about how to organise your DPhil? How to make the most of your supervision meetings? How to guarantee success in your studies? Look no further!

In this session we will explore the fundamentals of a successful DPhil with help from faculty members, postdocs and DPhil students.

In the first half of the session Andreas Münch, the Director of Graduate Studies, will give a brief overview of the stages of the DPhil programme in Oxford; after this Marc Lackenby will talk about his experience as a PhD student and supervisor.

The second part of the session will be a panel discussion, with panel members Lucy Hutchinson, Mark Penney, Michal Przykucki, and Thomas Woolley. Senior faculty members will be kindly asked to leave the lecture theatre to ensure that students feel comfortable about discussing their experiences with later year students and postdocs/research fellows.

At 5pm senior and junior faculty members, postdocs and students will reunite in the Common Room for Happy Hour.

About the speakers and panel members:

Andreas Münch received his PhD from the Technical University of Munich under the supervision of Karl-Heinz Hoffmann. He moved to Oxford in 2009, where he is an Associate Professor in Applied Mathematics. As the Director of Graduate Studies he deals with matters related to training and education of graduate students. 

Marc Lackenby received his PhD from Cambridge under the supervision of W. B. Raymond Lickorish. He moved to Oxford in 1999, where he has been a Professor of Mathematics since 2006. 

Marc Lackenby

Lucy Hutchinson is a DPhil student in the Mathematical Biology group studying her final year.

No image

Mark Penney is a fourth-year DPhil student in the Topology group.

Michal Przykucki received his PhD from Cambridge in 2013 under the supervision of Béla Bollobás; he is a member of the Combinatorics research group, and has been a Drapers Junior Research Fellow at St Anne's College since 2014. 

No image

Thomas Woolley received his DPhil from Oxford in 2012 under the supervision of Ruth Baker, Eamonn Gaffney, and Philip Maini. He is a member of the Mathematical Biology Group and has been a St John’s College Junior Research Fellow in Mathematics since 2013.

No image

Fri, 11 Nov 2016

14:00 - 15:00
L3

Multiscale modelling of biomolecules: from atomistic molecular dynamics to the continuum limit with fluctuating finite element analysis

Dr Sarah Harris
(School of Physics & Astronomy University of Leeds)
Abstract

Atomistic Molecular Dynamics is a well established biomolecular modelling tool that uses the wealth of information available in the Protein Data Bank (PDB). However, biophysical techniques that provide structural information at the mesoscale, such as cryo-electron microscopy and 3D tomography, are now sufficiently mature that they merit their own online repository called the EMDataBank (EMDB). We have developed a continuum mechanics description of proteins which uses this new experimental data as input to the simulations, and which we are developing into a software tool for use by the biomolecular science community. The model is a Finite Element algorithm which we have generalised to include the thermal fluctuations that drive protein conformational changes, and which is therefore known as Fluctuating Finite Element Analysis (FFEA) [1].

We will explain the physical principles underlying FFEA and provide a practical overview of how a typical FFEA simulation is set up and executed. We will then demonstrate how FFEA can be used to model flexible biomolecular complexes from EM and other structural data using our simulations of the molecular motors and protein self-assembly as illustrative examples. We then speculate how FFEA might be integrated with atomistic models to provide a multi-scale description of biomolecular structure and dynamics.

1. Oliver R., Read D. J., Harlen O. G. & Harris S. A. “A Stochastic finite element model for the dynamics of globular macromolecules”, (2013) J. Comp. Phys. 239, 147-165.

Fri, 11 Nov 2016
10:00
N3.12

Realising the projective representations of the symmetric group using Dirac cohomology.

Kieran Calvert
(University of Oxford)
Abstract

Firstly I will outline Dirac cohomology for graded Hecke algebras and the branching rules for the projective representations of $S_n$. Combining these notions with the Jucys-Murphy elements for $\tilde{S}_n$, that is the double cover of the symmetric group, I will go through a method to completely describe the spectrum data for the Jucys-Murphy elements for $\tilde{S}_n$. If time allows I will also explain how this spectrum data gives rise to a a concrete description for the matrices of the action of $\tilde{S}_n$.

Fri, 11 Nov 2016

10:00 - 11:00
L4

The "surfactantless" middle phase

Harry McEvoy
(dstl)
Abstract

Dstl are interested in removing liquid contaminants from capillary features (cracks in surfaces, screw threads etc.). We speculated that liquid decontaminants with low surface tension would have beneficial properties. The colloid literature, and in particular the oil recovery literature, discusss the properties of multiphase systems in terms of “Winsor types”, typically consisting of “brine” (water + electrolyte), “oil” (non-polar, water-insoluble solvent) and surfactant. Winsor I systems are oil-in-water microemulsions and Winsor II systems are water-in-oil microemulsions. Under certain circumstances, the mixture will separate into three phases. The middle (Winsor III) phase is surfactant-rich, and is reported to exhibit ultra-low surface tension. The glycol ethers (“Cellosolve” type solvents) consist of short (3-4) linked ether groups attached to short (3-4 carbon) alkyl chains. Although these materials would not normally be considered to be surfactants, their polar head, non-polar tail properties allow them to form a “surfactantless” Winsor III middle phase. We have found that small changes in temperature, electrolyte concentration or addition of contaminant can cause these novel colloids to phase separate. In our decontamination experiments, we have observed that contaminant-induced phase separation takes the form of droplets of the separating phase. These droplets are highly mobile, exhibiting behaviour that is visually similar to Brownian motion, which induces somewhat turbulent liquid currents in the vicinity of the contaminant. We tentatively attribute this behaviour to the Marangoni effect. We present our work as an interesting physics/ physical chemistry phenomenon that should be suitable for mathematical analysis.

Thu, 10 Nov 2016
17:30
L6

Profinite groups with NIP theory and p-adic analytic groups

Dugald Macpherson
(Leeds)
Abstract

I will describe joint work with Katrin Tent, in which we consider a profinite group equipped with a uniformly definable family of open subgroups. We show that if the family is `full’ (i.e. includes all open subgroups) then the group has NIP theory if and only if it has NTP_2 theory, if and only if it has an (open) normal subgroup of finite index which is a direct product of finitely many compact p-adic analytic groups (for distinct primes p). Without the `fullness’ assumption, if the group has NIP theory then it  has a prosoluble open normal subgroup of finite index.

Thu, 10 Nov 2016

16:00 - 17:00
C5

TBA

Nicholas Wilkins
((Oxford University))
Thu, 10 Nov 2016

16:00 - 17:00
L3

Ousman Kodio, Edward Rolls

OCIAM Group Meeting
(University of Oxford)
Abstract

Ousman Kodio

Lubricated wrinkles: imposed constraints affect the dynamics of wrinkle coarsening

We investigate the problem of an elastic beam above a thin viscous layer. The beam is subjected to
a fixed end-to-end displacement, which will ultimately cause it to adopt the Euler-buckled
state. However, additional liquid must be drawn in to allow this buckling. In the interim, the beam
forms a wrinkled state with wrinkles coarsening over time. This problem has been studied
experimentally by Vandeparre \textit{et al.~Soft Matter} (2010), who provides a scaling argument
suggesting that the wavelength, $\lambda$, of the wrinkles grows according to $\lambda\sim t^{1/6}$.
However, a more detailed theoretical analysis shows that, in fact, $\lambda\sim(t/\log t)^{1/6}$.
We present numerical results to confirm this and show that this result provides a better account of
previous experiments.

 

Edward Rolls

Multiscale modelling of polymer dynamics: applications to DNA

We are interested in generalising existing polymer dynamics models which are applicable to DNA into multiscale models. We do this by simulating localized regions of a polymer chain with high spatial and temporal resolution, while using a coarser modelling approach to describe the rest of the polymer chain in order to increase computational speeds. The simulation maintains key macroscale properties for the entire polymer. We study the Rouse model, which describes a polymer chain of beads connected by springs by developing a numerical scheme which considers the a filament with varying spring constants as well as different timesteps to advance the positions of different beads, in order to extend the Rouse model to a multiscale model. This is applied directly to a binding model of a protein to a DNA filament. We will also discuss other polymer models and how it might be possible to introduce multiscale modelling to them.

Thu, 10 Nov 2016
16:00
L6

Effective equidistribution of rational points on expanding horospheres

Min Lee
(University of Bristol)
Abstract

The equidistribution theorem for rational points on expanding horospheres with fixed denominator in the space of d-dimensional Euclidean lattices has been derived in the work by M. Einsiedler, S. Mozes, N. Shah and U. Shapira. The proof of their theorem requires ergodic theoretic tools, including Ratner's measure classification theorem. In this talk I will present an alternative approach, based on harmonic analysis and Weil's bound for Kloosterman sums. In the case of d=3, unlike the ergodic-theoretic approach, this provides an explicit estimate on the rate of convergence. This is a joint work with Jens Marklof. 

Thu, 10 Nov 2016

16:00 - 17:30
L4

Solution of BSDEs: Error Expansion and Complexity Control.

Camilo Garcia
(UCL)
Abstract


Backward SDEs have proven to be a useful tool in mathematical finance. Their applications include the solution to various pricing and equilibrium problems in complete and incomplete markets, the estimation of value adjustments in the presence of funding costs, and the solution to many utility/risk optimisation type of problems.
In this work, we prove an explicit error expansion for the approximation of BSDEs. We focus our work on studying the cubature  method of solution. To profit fully from these expansions in this case, e.g. to design high order approximation methods, we need in addition to control the complexity growth of the base algorithm. In our work, this is achieved by using a sparse grid representation. We present several numerical results that confirm the efficiency of our new method. Based on joint work with J.F. Chassagneux.
 

Thu, 10 Nov 2016

14:00 - 15:00
L4

Derived Hecke algebras

Prof. Peter Schneider
(University of Muenster)
Abstract

The smooth representation theory of a p-adic reductive group G

with characteristic zero coefficients is very closely connected to the

module theory of its (pro-p) Iwahori-Hecke algebra H(G). In the modular

case, where the coefficients have characteristic p, this connection

breaks down to a large extent. I will first explain how this connection

can be reinstated by passing to a derived setting. It involves a certain

differential graded algebra whose zeroth cohomology is H(G). Then I will

report on a joint project with

R. Ollivier in which we analyze the higher cohomology groups of this dg

algebra for the group G = SL_2.

Thu, 10 Nov 2016
14:00
L4

Derived Hecke algebras

Peter Schneider
(Muenster)
Abstract

The smooth representation theory of a p-adic reductive group G with characteristic zero coefficients is very closely connected to the module theory of its (pro-p) Iwahori-Hecke algebra H(G). In the modular case, where the coefficients have characteristic p, this connection breaks down to a large extent. I will first explain how this connection can be reinstated by passing to a derived setting. It involves a certain differential graded algebra whose zeroth cohomology is H(G). Then I will report on a joint project with R. Ollivier in which we analyze the higher cohomology groups of this dg algebra for the group G = SL_2.

Thu, 10 Nov 2016
11:00
C5

tba

Ehud Hrushovski.
Wed, 09 Nov 2016
15:00
L5

On the Enumeration of Irreducible Polynomials over GF(q) with Prescribed Coefficients

Rob Granger
(EPFL (Ecole Polytechnique Federale de Lausanne))
Abstract

Gauss was the first to give a formula for the number of monic irreducible polynomials of degree n over a finite field. A natural problem is to determine the number of such polynomials for which certain coefficients are prescribed. While some asymptotic and existence results have been obtained, very few exact results are known. In this talk I shall present an algorithm which for any finite field GF(q) of characteristic p expresses the number of monic irreducibles of degree n for which the first l < p coefficients are prescribed, for n >= l and coprime to p, in terms of the number of GF(q^n)-rational points of certain affine varieties defined over GF(q). 
The GF(2) base field case is related to the distribution of binary Kloosterman sums, which have numerous applications in coding theory and cryptography, for example via the construction of bent functions. Using a variant of the algorithm, we present varieties (which are all curves) for l <= 7 and compute explicit formulae for l <= 5; before this work such formulae were only known for l <= 3. While this connection motivates the problem, the talk shall focus mainly on computational algebraic geometry, with the algorithm, theoretical questions and computational challenges taking centre stage.

Wed, 09 Nov 2016
11:30
N3.12

Hilbert's Third Problem

Alex Margolis
Abstract

Two polyhedra are said to be scissors congruent if they can be subdivided into the same finite number of polyhedra such that each piece in the first polyhedron is congruent to one in the second. In 1900, Hilbert asked if there exist tetrahedra of the same volume which are not scissors congruent. I will give a history of this problem and its proofs, including an incorrect 'proof' by Bricard from 1896 which was only rectified in 2007.

Tue, 08 Nov 2016

15:45 - 16:45
L4

Towards a compactification of the moduli space of K3 surfaces of degree 2

Alan Thompson
(Warwick)
Abstract

Ever since moduli spaces of polarised K3 surfaces were constructed in the 1980's, people have wondered about the question of compactification: can one make the moduli space of K3 surfaces compact by adding in some boundary components in a "nice" way? Ideally, one hopes to find a compactification that is both explicit and geometric (in the sense that the boundary components provide moduli for degenerate K3's). I will present on joint work in progress with V. Alexeev, which aims to solve the compactification problem for the moduli space of K3 surfaces of degree 2.