Tue, 04 Mar 2008

16:00 - 17:00
L1

Boundedly generated groups and small-cancellation method

Alex Muranov
(Lyon)
Abstract

A group is called boundedly generated if it is the product of a finite sequence of its cyclic subgroups. Bounded generation is a property possessed by finitely generated abelian groups and by some other linear groups.

Apparently it was not known before whether all boundedly generated groups are linear. Another question about such groups has also been open for a while: If a torsion-free group $G$ has a finite sequence of generators $a_1,\dotsc,a_n$ such that every element of $G$ can be written in a unique way as $a_1^{k_1}\dotsm a_n^{k_n}$, where $k_i\in\mathbb Z$, is it true then that $G$ is virtually polycyclic? (Vasiliy Bludov, Kourovka Notebook, 1995.)

Counterexamples to resolve these two questions have been constructed using small-cancellation method of combinatorial group theory. In particular boundedly generated simple groups have been constructed.

Tue, 04 Mar 2008
13:30
L3

"Ramsey numbers of sparse graphs"

David Conlon
(Cambridge)
Abstract

Let d be a fixed natural number. There is a theorem, due to Chvátal, Rodl,

Szemerédi and Trotter (CRST), saying that the Ramsey number of any graph G

with maximum degree d and n vertices is at most c(d)n, that is it grows

linearly with the size of n. The original proof of this theorem uses the

regularity lemma and the resulting dependence of c on d is of tower-type.

This bound has been improved over the years to the stage where we are now

grappling with proving the correct dependency, believed to be an

exponential in d. Our first main result is a proof that this is indeed the

case if we assume additionally that G is bipartite, that is, for a

bipartite graph G with n vertices and maximum degree d, we have r(G)

Tue, 04 Mar 2008
11:00
L3

Future stability of the Einstein-non-linear scalar field system, power law expansion

Hans Ringstroem
(Royal Institute of Technology, Stockholm)
Abstract

In the case of Einstein's equations coupled to a non-linear scalar field with a suitable exponential potential, there are solutions for which the expansion is accelerated and of power law type. In the talk I will discuss the future global non-linear stability of such models. The results generalize those of Mark Heinzle and Alan Rendall obtained using different methods.

Mon, 03 Mar 2008
16:00
L3

Reconstruction of deformations from Cauchy-Green tensors with little regularity

Sorin Mardare
(University of Zurich)
Abstract

One of the intrinsic methods in elasticity is to consider the Cauchy-Green tensor as the primary unknown, instead of the deformation realizing this tensor, as in the classical approach.

Then one can ask whether it is possible to recover the deformation from its Cauchy-Green tensor. From a differential geometry viewpoint, this amounts to finding an isometric immersion of a Riemannian manifold into the Euclidian space of the same dimension, say d. It is well known that this is possible, at least locally, if and only if the Riemann curvature tensor vanishes. However, the classical results assume at least a C2 regularity for the Cauchy-Green tensor (a.k.a. the metric tensor). From an elasticity theory viewpoint, weaker regularity assumptions on the data would be suitable.

We generalize this classical result under the hypothesis that the Cauchy-Green tensor is only of class W^{1,p} for some p>d.

The proof is based on a general result of PDE concerning the solvability and stability of a system of first order partial differential equations with L^p coefficients.

Mon, 03 Mar 2008
14:45
L3

Finitely generated simple groups of infinite commutator width.

Alex Muranov
(Lyon)
Abstract

If $G$ is a group and $g$ an element of the derived subgroup $[G,G]$, the commutator length of $g$ is the least positive integer $n$ such that $g$ can be written as a product of $n$ commutators. The commutator width of $G$ is the maximum of the commutator lengths of elements of $[G,G]$. Until 1991, to my knowledge, it has not been known whether there exist simple groups of commutator width greater than $1$. The same question for finite simple groups still remains unsolved. In 1992, Jean Barge and Étienne Ghys showed that the commutator width of certain simple groups of diffeomorphisms is infinite. However, those groups are not finitely generated. Finitely generated infinite simple groups of infinite commutator width can be constructed using "small cancellations." Additionally, finitely generated infinite boundedly simple groups of arbitrarily large (but necessarily finite) commutator width can be constructed in a similar way.

Mon, 03 Mar 2008
14:45
Oxford-Man Institute

Some new results on 1-d self-repelling random walks

Prof. Balint Toth
(Budapest)
Abstract

I will present two new results in the context of the title. Both are joint work with B. Veto.

1. In earlier work a limit theorem with $t^{2/3}$ scaling was established for a class of self repelling random walks on $\mathbb Z$ with long memory, where the self-interaction was defined in terms of the local time spent on unoriented edges. For combinatorial reasons this proof was not extendable to the natural case when the self-repellence is defined in trems of local time on sites. Now we prove a similar result for a *continuous time* random walk on $\mathbb Z$, with self-repellence defined in terms of local time on sites.

2. Defining the self-repelling mechanism in terms of the local time on *oriented edges* results in totally different asymptotic behaviour than the unoriented cases. We prove limit theorems for this random walk with long memory.

Mon, 03 Mar 2008
13:15
Oxford-Man Institute

The allele frequency spectrum associated with the Bolthausen-Sznitman coalescent

Dr Christina Goldschmidt
(Department of Statistics, Oxford)
Abstract

I will take as my starting point a problem which is classical in

population genetics: we wish to understand the distribution of numbers

of individuals in a population who carry different alleles of a

certain gene. We imagine a sample of size n from a population in

which individuals are subject to neutral mutation at a certain

constant rate. Every mutation gives rise to a completely new type.

The genealogy of the sample is modelled by a coalescent process and we

imagine the mutations as a Poisson process of marks along the

coalescent tree. The allelic partition is obtained by tracing back to

the most recent mutation for each individual and grouping together

individuals whose most recent mutations are the same. The number of

blocks of each of the different possible sizes in this partition is

called the allele frequency spectrum. Recently, there has been much

interest in this problem when the underlying coalescent process is a

so-called Lambda-coalescent (even when this is not a biologically

``reasonable'' model) because the allelic partition is a nice example

of an exchangeable random partition. In this talk, I will describe

the asymptotics (as n tends to infinity) of the allele frequency

spectrum when the coalescent process is a particular Lambda-coalescent

which was introduced by Bolthausen and Sznitman. It turns out that

the frequency spectrum scales in a rather unusual way, and that we

need somewhat unusual tools in order to tackle it.

This is joint work with Anne-Laure Basdevant (Toulouse III).

Mon, 03 Mar 2008

11:00 - 12:00
L3

Seeing through the string landscape: domain walls and black holes

Dieter Luest
(LMU-Muenchen and Max Planck Institut fuer Physik)
Abstract
Abstract: We will discuss string $AdS_4$ domain wall solutions with stabilized moduli. These solutions are interesting, since they potentially induce decay processes between different vacua within the string landscape. Moreover, we discuss how black hole physics provide another tool of seeing through the vacuum landscape.
Fri, 29 Feb 2008
15:30
L2

The Modular Flow

Professor Etienne Ghys
(ENS Lyon)
Abstract

A lattice in the plane is a discrete subgroup in R^2 isomorphic to Z^2 ; it is unimodular if the area of the quotient is 1. The space of unimodular lattices is a venerable object in mathematics related to topology, dynamics and number theory. In this talk, I'd like to present a guided tour of this space, focusing on its topological aspect. I will describe in particular the periodic orbits of the modular flow, giving rise to beautiful "modular knots". I will show some animations

Fri, 29 Feb 2008
14:15
L3

Arithmetic in groups of piece-wise affine permutations of an interval

Alexey Muranov
(Lyon)
Abstract

Bardakov and Tolstykh have recently shown that Richard Thompson's group

$F$ interprets the Arithmetic $(\mathbb Z,+,\times)$ with parameters. We

consider a class of infinite groups of piecewise affine permutations of

an interval which contains all the three groups of Thompson and some

classical families of finitely presented infinite simple groups. We have

interpreted the Arithmetic in all the groups of this class. In particular

we have obtained that the elementary theories of all these groups are

undecidable. Additionally, we have interpreted the Arithmetic in $F$ and

some of its generalizations without parameters.

This is a joint work with Tuna Altınel.

Fri, 29 Feb 2008
13:15
DH 1st floor SR

In which Financial Markets do Mutual Fund Theorems hold true?

Walter Schachermayer
(Vienna)
Abstract

The Mutual Fund Theorem (MFT) is considered in a general semimartingale financial market S with a finite time horizon T, where agents maximize expected utility of terminal wealth. The main results are:

(i) Let N be the wealth process of the numéraire portfolio (i.e. the optimal portfolio for the log utility). If any path-independent option with maturity T written on the numéraire portfolio can be replicated by trading only in N and the risk-free asset, then the (MFT) holds true for general utility functions, and the numéraire portfolio may serve as mutual fund. This generalizes Merton’s classical result on Black-Merton-Scholes markets.

Conversely, under a supplementary weak completeness assumption, we show that the validity of the (MFT) for general utility functions implies the replicability property for options on the numéraire portfolio described above.

(ii) If for a given class of utility functions (i.e. investors) the

(MFT) holds true in all complete Brownian financial markets S, then all investors use the same utility function U, which must be of HARA type.

This is a result in the spirit of the classical work by Cass and Stiglitz.

Fri, 29 Feb 2008
13:00
L3

Self-simplification and 0-1 laws in multiscale reaction networks

Professor Alex Gorban
(University of Leicester)
Abstract

Multiscale ensembles of reaction networks with well separated constants are introduced and typical properties of such systems are studied. For any given ordering of reaction rate constants the explicit approximation of steady state, relaxation spectrum and related eigenvectors (``modes") is presented. The obtained multiscale approximations are computationally cheap and robust. Some of results obtained are rather surprising and unexpected. First of all is the zero-one asymptotic of eigenvectors (asymptotically exact lumping; but these asymptotic lumps could intersect). Our main mathematical tools are auxiliary discrete dynamical systems on finite sets and specially developed algorithms of ``cycles surgery"

for reaction graphs. Roughly speaking, the dynamics of linear multiscale networks transforms into the dynamics on finite sets of reagent names.

A.N. Gorban and O. Radulescu, Dynamic and static limitation in multiscale reaction networks, Advances in Chemical Engineering, 2008 (in press), arXiv e-print: http://arxiv.org/abs/physics/0703278

A.N. Gorban and O. Radulescu, Dynamical robustness of biological networks with hierarchical distribution of time scales, IET Syst.

Biol., 2007, 1, (4), pp. 238-246.

Thu, 28 Feb 2008
10:00
Gibson 1st Floor SR

" The Gamma-limit of a finite-strain Cosserat model for asymptotically thin domains versus a formal dimensional reduction."

Patrizio Neff
Abstract
We are concerned with the derivation of the Γ-limit to a three dimensional geometrically exact Cosserat model as the relative thickness h > 0 of a at domain tends to zero. The Cosserat bulk model involves already exact rotations as a second independent field and this model is meant to describe defective elastic crystals liable to fracture under shear.
It is shown that the Γ-limit based on a natural scaling assumption con- sists of a membrane like energy contribution and a homogenized transverse shear energy both scaling with h, augmented by an additional curvature stiffness due to the underlying Cosserat bulk formulation, also scaling with h. No specific bending term appears in the dimensional homogenization process. The formulation exhibits an internal length scale Lc which sur- vives the homogenization process. A major technical difficulty, which we encounter in applying the Γ-convergence arguments, is to establish equi- coercivity of the sequence of functionals as the relative thickness h tends to zero. Usually, equi-coercivity follows from a local coerciveness assump- tion. While the three-dimensional problem is well-posed for the Cosserat couple modulus μc ≥ 0, equi-coercivity forces us to assume a strictly pos- itive Cosserat couple modulus μc > 0. The Γ-limit model determines the midsurface deformation m ∈ H1,2(ω;R3). For the case of zero Cosserat couple modulus μc= 0 we obtain an estimate of the Γ - lim inf and Γ - lim sup, without equi-coercivity which is then strenghtened to a Γ- convergence result for zero Cosserat couple modulus. The classical linear Reissner-Mindlin model is "almost" the linearization of the Γ-limit for μc = 0 apart from a stabilizing shear energy term.
Thu, 28 Feb 2008

10:00 - 11:00
Gibson 1st Floor SR

The $\Gamma$-limit of a finite-strain Cosserat model for asymptotically thin domains versus a formal dimensional reduction

Patrizo Neff
(University of Essen & T.U. Darmstadt)
Abstract

We are concerned with the derivation of the $\Gamma$-limit to a three-dimensional geometrically exact

Cosserat model as the relative thickness $h>0$ of a flat domain tends to zero. The Cosserat bulk model involves

already exact rotations as a second independent field and this model is meant to describe defective elastic crystals liable to fracture under shear.

It is shown that the $\Gamma$-limit based on a natural scaling assumption

consists of a membrane like energy contribution and a homogenized transverse shear energy both scaling with $h$,

augmented by an additional curvature stiffness due to the underlying Cosserat bulk formulation, also scaling with $h$.

No specific bending term appears in the dimensional homogenization process. The formulation

exhibits an internal length scale $L_c$ which survives the homogenization process.

%

A major technical difficulty, which we encounter in applying the $\Gamma$-convergence arguments,

is to establish equi-coercivity of the sequence of

functionals as the relative thickness $h$ tends to zero. Usually, equi-coercivity follows from a local coerciveness assumption.

While the three-dimensional problem is well-posed for the Cosserat couple modulus $\mu_c\ge 0$, equi-coercivity forces us

to assume a strictly positive Cosserat couple modulus $\mu_c>0$. The $\Gamma$-limit model determines the

midsurface deformation $m\in H^{1,2}(\omega,\R^3)$. For the case of zero Cosserat couple modulus $\mu_c=0$

we obtain an estimate of the $\Gamma-\liminf$ and $\Gamma-\limsup$, without equi-coercivity which is then strenghtened to a $\Gamma$-convergence result for zero Cosserat couple modulus. The classical linear

Reissner-Mindlin model is "almost" the linearization of the $\Gamma$-limit for $\mu_c=0$

apart from a stabilizing shear energy term.

Thu, 28 Feb 2008
10:00
L3

Zariski reducts of o-minimal structures

Piotr Kowalski
(Wroclaw)
Abstract

This is joint work with Assaf Hasson. We consider non-locally modular strongly minimal reducts of o-minimal expansions of reals. Under additional assumptions we show they have a Zariski structure.

Wed, 27 Feb 2008
15:00
L3

TBA

TBA
Wed, 27 Feb 2008
12:00
Gibson 1st Floor SR

" Spectral computations of models for martensitic phase transformations"

Benson Muite
Abstract

We describe how to perform high resolution simulations of viscoelastic continuum mechanical models for martensitic transformations with diffuse interfaces. The computational methods described may also be of use in performing high resolution simulations of time dependent partial differential equations where solutions are sufficiently smooth.

Tue, 26 Feb 2008
16:00
L3

TBA

Catalin Badea
(Lille)
Tue, 26 Feb 2008
13:15
Oxford-Man Institute

TBA

Professor Jean Jacod
(University Paris VI)
Mon, 25 Feb 2008
16:00
L3

Representation theory of affine Hecke algebras and K-theory

Eric Opdam
(Amsterdam)
Abstract

In recent joint work with Maarten Solleveld we could give a complete classification of the set the irreducible discrete series characters of affine Hecke algebras (including the non simply-laced cases). The results can be formulated in terms of the K-theory of the Schwartz completion of the Hecke algebra. We discuss these results and some related conjectures on formal dimensions and on elliptic characters.

Mon, 25 Feb 2008
16:00
L3

Gradient-plasticity: modelling and analysis.

Patrizio Neff
(University of Essen & T.U. Darmstadt)
Abstract
We discuss a model of finite strain gradient plasticity including phenomenological Prager type linear kinematical hardening and nonlocal kinematical hardening due to dislocation interaction. Based on the multiplicative decomposition a thermodynamically admissible flow rule for Fp is described involving as plastic gradient Curl Fp. The formulation is covariant w.r.t. superposed rigid rotations of the reference, intermediate and spatial configuration but the model is not spin-free due to the nonlocal dislocation interaction and cannot be reduced to a dependenceon the plastic metric Cp=FpT Fp.
The linearization leads to a thermodynamically admissible model of infinitesimal plasticity involving only the Curl of the non-symmetric plastic distortion p. Linearized spatial and material covariance under constant infinitesimal rotations is satisfied.
Uniqueness of strong solutions of the infinitesimal model is obtained if two non-classical boundary conditions on the plastic distortion p are introduced: dtp.τ=0 on the microscopically hard boundary ΓD⊂∂Ω and [Curlp].τ=0 on the microscopically free boundary ∂Ω\ΓD, where τ are the tangential vectors at the boundary ∂Ω. Moreover, I show that a weak reformulation of the infinitesimal model allows for a global in-time solution of the corresponding rate-independent initial boundary value problem. The method of choice are a formulation as a quasivariational inequality with symmetric and coercive bilinear form, following the abstract framework proposed by Reddy. Use is made of new Hilbert-space suitable for dislocation density dependent plasticity.
Mon, 25 Feb 2008
15:30
Ryle Room (10 Merton Street)

'The New Intuitionism'

David McCarty
(Indiana University)
Abstract

Now that the "classical" philosophies that have danced attendance upon intuitionistic mathematics (Brouwer's subjectivism, Heyting's eclecticism, and contemporary anti-realism) are recognized as failures, it is encumbent upon intuitionists to develop new foundations for their mathematics. In this talk, we assay such efforts, in particular, investigations into the various mathematical grounds on the basis of which the law of the excluded third might be proven invalid. It will also be necessary, along the way, to explode certain mistaken ideas about intuitionism, among them the notion that the logical signs of the intuitionists bear meanings different from those attached to the corresponding signs in conventional mathematics.

Please let Bruno Whittle (@email) know if you would like to go out to dinner with the speaker after the seminar.

Mon, 25 Feb 2008
14:45
Oxford-Man Institute

Linearly edge-reinforced random walks, part II

Dr Franz Merkl
(Munchen, Germany)
Abstract

We consider a linearly edge-reinforced random walk

on a class of two-dimensional graphs with constant

initial weights. The graphs are obtained

from Z^2 by replacing every edge by a sufficiently large, but fixed

number of edges in series.

We prove that a linearly edge-reinforced random walk on these graphs

is recurrent. Furthermore, we derive bounds for the probability that

the edge-reinforced random walk hits the boundary of a large box

before returning to its starting point.

Part I will also include an overview on the history of the model.

In part II, some more details about the proofs will be explained.

Mon, 25 Feb 2008
14:45
L3

Topological rigidity and word-hyperbolic groups

Arthur Bartels
(Imperial)
Abstract

The Borel conjecture asserts that aspherical manifolds are topologically rigid, i.e., every homotopy equivalence between such manifolds is homotopic to a homeomorphism. This conjecture is strongly related to the Farrell-Jones conjectures in algebraic K- and L-theory. We will give an introduction to these conjectures and discuss the proof of the Borel conjecture for high-dimensional aspherical manifolds with word-hyperbolic fundamental groups.

Mon, 25 Feb 2008
13:15
Oxford-Man Institute

Linearly edge-reinforced random walks, part I

Dr Silke Rolles
(Munchen, Germany)
Abstract

We consider a linearly edge-reinforced random walk

on a class of two-dimensional graphs with constant

initial weights. The graphs are obtained

from Z^2 by replacing every edge by a sufficiently large, but fixed

number of edges in series.

We prove that a linearly edge-reinforced random walk on these graphs

is recurrent. Furthermore, we derive bounds for the probability that

the edge-reinforced random walk hits the boundary of a large box

before returning to its starting point.

Part I will also include an overview on the history of the model.

In part II, some more details about the proofs will be explained.

Mon, 25 Feb 2008

11:00 - 12:00
L3

String inspired progress in perturbative gauge theory

Bill Spence
(QMW)
Abstract
Abstract: We discuss the string-inspired approach to gauge theory amplitudes prompted by the work of Alday and Maldacena, in particular its application to weak coupling.
Fri, 22 Feb 2008
14:15
L3

Non Archimedian Geometry and Model Theory

Francois Loeser
(ENS)
Abstract

We shall present work in progress in collaboration with E. Hrushovski on the geometry of spaces of stably dominated types in connection with non archimedean geometry \`a la Berkovich