Tue, 08 Nov 2016
14:30
L6

Turán Numbers via Local Stability Method

Liana Yepremyan
(Oxford University)
Abstract

The Turán number of an $r$-graph $G$, denoted by $ex(n,G)$, is the maximum number of edges in an $G$-free $r$-graph on $n$ vertices. The Turán density  of an $r$-graph $G$, denoted by $\pi(G)$, is the limit as $n$ tends to infinity of the maximum edge density of an $G$-free $r$-graph on $n$ vertices.

During this talk I will discuss a method, which we call  local stability method, that allows one to obtain exact Turán numbers from Turán density results. This method can be thought of as an extension of the classical stability method by  generically utilising the Lagrangian function. Using it, we obtained new hypergraph Turán numbers. In particular, we did so for a hypergraph called generalized triangle, for uniformities 5 and 6, which solved a conjecture of Frankl and Füredi from 1980's.

This is joint work with Sergey Norin.

Tue, 08 Nov 2016
14:30
L5

Solving commutators while preserving structure

Pranav Singh
(Mathematical Institute)
Abstract



Nested commutators of differential operators appear frequently in the numerical solution of equations of quantum mechanics. These are expensive to compute with and a significant effort is typically made to avoid such commutators. In the case of Magnus-Lanczos methods, which remain the standard approach for solving Schrödinger equations featuring time-varying potentials, however, it is not possible to avoid the nested commutators appearing in the Magnus expansion.

We show that, when working directly with the undiscretised differential operators, these commutators can be simplified and are fairly benign, cost-wise. The caveat is that this direct approach compromises structure -- we end up with differential operators that are no longer skew-Hermitian under discretisation. This leads to loss of unitarity as well as resulting in numerical instability when moderate to large time steps are involved. Instead, we resort to working with symmetrised differential operators whose discretisation naturally results in preservation of structure, conservation of unitarity and stability
 

Tue, 08 Nov 2016
14:15
L4

Decomposition rules for representations of p-adic groups

Max Gurevich
(Weizmann Institute)
Abstract


What are the irreducible constituents of a smooth representation of a p-adic group that is constructed through parabolic induction? In the case of GL_n this is the study of the multiplicative behaviour of irreducible representations in the Bernstein-Zelevinski ring. Strikingly, the same decomposition problem can be reformulated through various Lie-theoretic settings of type A, such as canonical bases in quantum groups, representations of affine Hecke algebras, quantum affine Lie algebras, or more recently, KLR algebras. While partially touching on some of these phenomena, I will present new results on the problem using mostly classical tools. In particular, we will see how introducing a width invariant to an irreducible representation can circumvent the complexity involved in computations of Kazhdan-Lusztig polynomials.

Tue, 08 Nov 2016

12:00 - 13:15
L4

Ten-dimensional light-like lines, smooth Wilson loops in N=4 super Yang-Mills and twistors

Dr Christian Vergu
(Kings College London)
Abstract

In this talk I will present a class of super-Wilson loops in N=4 super Yang-Mills theory. The expectation value of these operators has been shown previously to be invariant under a Yangian symmetry. I will show how the kinematics of such super-Wilson loops can be described in a twistorial way and how this leads to compact, manifestly super-conformal invariant expressions for some two-point functions.
 

Mon, 07 Nov 2016

16:00 - 17:00
L4

Equilibrium measure for a nonlocal dislocation energy

Lucia Scardia
(University of Bath)
Abstract

In this talk I will present a recent result on the characterisation of the equilibrium measure for a nonlocal and non-radial energy arising as the Gamma-limit of discrete interacting dislocations.

Mon, 07 Nov 2016
15:45
L6

Polynomial-time Nielsen--Thurston type recognition

Richard Webb
(Cambridge)
Abstract

A cornerstone of the study of mapping class groups is the
Nielsen--Thurston classification theorem. I will outline a
polynomial-time algorithm that determines the Nielsen--Thurston type and
the canonical curve system of a mapping class. Time permitting, I shall
describe a polynomial-time algorithm to compute the quotient orbifold of
a periodic mapping class, and I shall discuss the conjugacy problem for
the mapping class group. This is joint work with Mark Bell.

Mon, 07 Nov 2016

15:45 - 16:45
L1

Mean field for interacting particles subject to environmental noise

MICHELE COGHI
(University of Pisa Italy)
Abstract

A system of interacting particles described by stochastic differential equations is considered. As opposed to the usual model, where the noise perturbations acting on different particles are independent, here the particles are subject to the same space-dependent noise, similar to the (no interacting) particles of the theory of diffusion of passive scalars. We prove a result of propagation of chaos and show that the limit PDE is stochastic and of in viscid type, as opposed to the case when independent noises drive the different particles. Moreover, we use this result to derive a mean field approximation of the stochastic Euler equations for the vorticity of an incompressible fluid.

Mon, 07 Nov 2016

14:15 - 15:15
L1

Probabilistic Numerical Computation: A New Concept?

MARK GIROLAMI
(University of Warwick)
Abstract

Ambitious mathematical models of highly complex natural phenomena are challenging to analyse, and more and more computationally expensive to evaluate. This is a particularly acute problem for many tasks of interest and numerical methods will tend to be slow, due to the complexity of the models, and potentially lead to sub-optimal solutions with high levels of uncertainty which needs to be accounted for and subsequently propagated in the statistical reasoning process. This talk will introduce our contributions to an emerging area of research defining a nexus of applied mathematics, statistical science and computer science, called "probabilistic numerics". The aim is to consider numerical problems from a statistical viewpoint, and as such provide numerical methods for which numerical error can be quantified and controlled in a probabilistic manner. This philosophy will be illustrated on problems ranging from predictive policing via crime modelling to computer vision, where probabilistic numerical methods provide a rich and essential quantification of the uncertainty associated with such models and their computation. 

Mon, 07 Nov 2016
14:15
L4

On short-time existence for mean curvature flow of surface clusters with triple edges

Felix Schulze
(UCL)
Abstract

We will discuss two recent short-time existence results for (1) mean curvature of surface clusters, where n-dimensional surfaces in R^{n+k}, are allowed to meet at equal angles along smooth edges, and (2) for planar networks, where curves are initially allowed to meet in multiple junctions that resolve immediately into triple junctions with equal angles. The first result, which is joint work with B. White, follows from an elliptic regularisation scheme, together with a local regularity result for flows with triple junctions, which are close to a static flow of the half-planes. The second result, which is joint work with T. Ilmanen and A.Neves, relies on a monotonicity formula for expanding solutions and a local regularity result for the network flow. 
 

Mon, 07 Nov 2016
12:45
L3

Some aspects of interacting conformal higher spin theories in 2+1 dimensions

Bengt Nilsson
(Chalmers University of Technology)
Abstract

In this talk I will discuss some features of interacting conformal higher spin theories in 2+1 dimensions. This is done in the context of Chern-Simons theory (giving e.g. the complete spin 2 covariant  spin 3 sector) and a higher spin coupled unfolded equation for the scalar singleton. One motivation for studying these theories is that their non-linear properties are rather poorly understood contrary to the situation for the Vasiliev type theory in this dimension which is under much better control. Another reason for the interest in these theories comes from AdS4/CFT3 and the possibility that Neumann/mixed bc for bulk higher spin fields may lead to conformal higher spin fields governed by Chern-Simons terms on the boundary. These theories generalise the spin 2 gauged BLG-ABJ(M)  theories found a few years ago to higher spins than 2.

 
Mon, 07 Nov 2016

11:00 - 12:00
C4

On the Ihara/Oda-Matsumoto conjecture and its variants

Adam Topaz
(Oxford)
Abstract

Following the spirit of Grothendieck’s Esquisse d’un Programme, the Ihara/Oda-Matsumoto conjecture predicted a combinatorial description of the absolute Galois group of Q based on its action on geometric fundamental groups of varieties. This conjecture was resolved in the 90’s by Pop using anabelian techniques. In this talk, I will discuss some satronger variants of this conjecture, focusing on the more recent solutions of its pro-ell and mod-ell two-step nilpotent variants.
 

Fri, 04 Nov 2016

16:00 - 17:00
L1

North meets South Colloquium

Emilie Dufresne + Robert Van Gorder
(Mathematical Institute, Oxford)
Abstract

What is the minimal size of a separating set? -- Emilie Dufresne

[[{"fid":"23334","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Emilie Dufresne","field_file_image_title_text[und][0][value]":"Emilie Dufresne"},"type":"media","attributes":{"alt":"Emilie Dufresne","title":"Emilie Dufresne","height":"258","width":"258","class":"media-element file-media-square"}}]]

Abstract: The problem of classifying objects up to certain allowed transformations figures prominently in almost all branches of Mathematics, and Invariants are used to decide if two objects are equivalent. A separating set is a set of invariants which achieve the desired classification. In this talk we take the point of view of Invariant Theory, where the objects correspond to points on an affine variety (often a vector space) and equivalence is given by the action of an algebraic group on this affine variety. We explain how the geometry and combinatorics of the group action govern the minimal size of separating sets.

 

Predator-Prey-Subsidy Dynamics and the Paradox of Enrichment on Networks -- Robert Van Gorder

[[{"fid":"23335","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Robert Van Gorder","field_file_image_title_text[und][0][value]":"Robert Van Gorder"},"type":"media","attributes":{"alt":"Robert Van Gorder","title":"Robert Van Gorder","height":"258","width":"258","class":"media-element file-media-square"}}]]

Abstract: The phrase "paradox of enrichment" was coined by Rosenzweig (1971) to describe the observation that increasing the food available to prey participating in predator-prey interactions can destabilize the predator's population. Subsequent work demonstrated that food-web connectance on networks can stabilize the predator-prey dynamics, thereby dampening the paradox of enrichment in networked domains (such as those used in stepping-stone models). However, when a resource subsidy is available to predators which migrate between nodes on such a network (as is actually observed in some real systems), we may show that predator-prey systems can exhibit a paradox of enrichment - induced by the motion of predators between nodes - provided that such networks are sufficiently densely connected. 

Fri, 04 Nov 2016
14:15
C3

Two phase flow in volcanic conduits

Andrew Fowler
(Universities of Oxford and Limerick)
Abstract

Strombolian volcanoes are thought to maintain their semi-permanent eruptive style by means of counter-current two-phase convective flow in the volcanic conduit leading from the magma chamber, driven by the buoyancy provided by exsolution of volatiles such as water vapour and carbon dioxide in the upwelling magma, due to pressure release. A model of bubbly two-phase flow is presented to describe this, but it is found that the solution breaks down before the vent at the surface is reached. We propose that the mathematical breakdown of the solution is associated with the physical breakdown of the two-phase flow regime from a bubbly flow to a churn-turbulent flow. We provide a second two-phase flow model to describe this regime, and we show that the solution can be realistically continued to the vent. The model is also in keeping with observations of eruptive style.

Fri, 04 Nov 2016

13:00 - 14:00
L6

Optimal Transport in general dimensions with various additional constraints

Tongseok Lim
(Mathematical Institute)
Abstract

We will introduce variants of the optimal transport problem, namely martingale optimal transport problem and subharmonic martingale transport problem. Their motivation is partly from mathematical finance. We will see that in dimension greater than one, the additional constraints imply interesting and deep mathematical subtlety on the attainment of dual problem, and it also affects heavily on the geometry of optimal solutions. If time permits, we will introduce still another variant of the martingale transport problem, called the multi-martingale optimal transport problem.

Fri, 04 Nov 2016
11:00
C5

Gauge theory and Fueter maps

Andriy Haydys
(Bielefeld University)
Abstract

A Fueter map between two hyperKaehler manifolds is a solution of a Cauchy-Riemann-type equation in the quaternionic context. In this talk I will describe relations between Fueter maps, generalized Seiberg-Witten equations, and Yang-Mills instantons on G2-manifolds (so called G2-instantons).

 
 
Fri, 04 Nov 2016

10:00 - 11:00
L4

Advanced Medical Imaging Reconstruction Using Distributed X-ray Sources

Gil travish
(Adaptix Imaging)
Abstract

Currently all medical x-ray imaging is performed using point-like sources which produce cone or fan beams. In planar radiology the source is fixed relative to the patient and detector array and therefore only 2D images can be produced. In CT imaging, the source and detector are rotated about the patient and through reconstruction (such as Radon methods), a 3D image can be formed. In Tomosynthesis, a limited range of angles are captured which greatly reduces the complexity and cost of the device and the dose exposure to the patient while largely preserving the clinical utility of the 3D images. Conventional tomosynthesis relies on mechanically moving a source about a fixed trajectory (e.g. an arc) and capturing multiple images along that path. Adaptix is developing a fixed source with an electronically addressable array that allows for a motion-free tomosynthesis system. The Adaptix approach has many advantages including reduced cost, portability, angular information acquired in 2D, and the ability to shape the radiation field (by selectively activating only certain emitters).


The proposed work would examine the effects of patient motion and apply suitable corrections to the image reconstruction (or raw data). Many approaches have been considered in the literature for motion correction, and only some of these may be of use in tomosynthesis. The study will consider which approaches are optimal, and apply them to the present geometry.


A related but perhaps distinct area of investigation is the use of “structured light” techniques to encode the x-rays and extract additional information from the imaging. Most conventional structured light approaches are not suitable for transmissive operation nor for the limited control available in x-rays. Selection of appropriate techniques and algorithms, however, could prove very powerful and yield new ways of performing medical imaging.


Adaptix is a start-up based at the Begbroke Centre for Innovation and Enterprise. Adaptix is transforming planar X-ray – the diagnostic imaging modality most widely used in healthcare worldwide. We are adding low-dose 3D capability – digital tomosynthesis - to planar X-ray while making it more affordable and truly portable so radiology can more easily travel to the patient. This transformation will enhance patient’s access to the world’s most important imaging technologies and likely increases the diagnostic accuracy for many high incidence conditions such as cardiovascular and pulmonary diseases, lung cancer and osteoporosis. 
 

Thu, 03 Nov 2016
17:00
L1

How Can We Understand Our Complex Economy? - Doyne Farmer

Doyne Farmer
(University of Oxford)
Abstract

We are increasingly better at predicting things about our environment. Modern weather forecasts are a lot better than they used to be, and our ability to predict climate change illustrates our better understanding of our effect on our environment. But what about predicting our collective effect on ourselves?  We now use tools like Google maps to predict how long it will take us to drive to work, and other small things, but we fail miserably when it comes to many of the big things. For example, the recent financial crisis cost the world tens of trillions of pounds, yet our ability to forecast, understand and mitigate the next economic crisis is very low. Is this inherently impossible? Or perhaps we are just not going about it the right way? The complex systems approach to economics, which brings in insights from the physical and natural sciences, presents an alternative to standard methods. Doyne will explain what this new approach is and give a few examples of its successes so far. He will then present a vision of the economics of the future which will need to confront the serious problems that the world will soon face.
 

Please email @email to register

Thu, 03 Nov 2016

16:00 - 17:00
C5

TBA

Tom Zeman
((Oxford University))
Thu, 03 Nov 2016
16:00
L6

Joint Logic/Number Theory Seminar: Arithmetic applications of $\omega$-integral curves in varieties

Natalia Garcia-Fritz
(Toronto)
Abstract

In 2000, Vojta solved the n-squares problem under the Bombieri-Lang conjecture, by explicitly finding all the curves of genus 0 or 1 on the surfaces related to this problem. The fundamental notion used by him is $\omega$-integrality of curves. 
In this talk, I will show a generalization of Vojta's method to find all curves of low genus in some surfaces, with arithmetic applications.
I will also explain how to use $\omega$-integrality to obtain a bound of the height of a non-constant morphism from a curve to $\mathbb{P}^2$ in terms of the number of intersections (without multiplicities) of its image with a divisor of a particular kind. This proves some new special cases of Vojta's conjecture for function fields.
 

Thu, 03 Nov 2016

16:00 - 17:00
L3

Numerical Analysis meets Topology

Henry Schenck
(University of Illinois)
Abstract

One of the fundamental tools in numerical analysis and PDE
is the finite element method (FEM). A main ingredient in
FEM are splines: piecewise polynomial functions on a
mesh. Even for a fixed mesh in the plane, there are many open
questions about splines: for a triangular mesh T and
smoothness order one, the dimension of the vector space
  C^1_3(T) of splines of polynomial degree at most three
is unknown. In 1973, Gil Strang conjectured a formula
for the dimension of the space C^1_2(T) in terms of the
combinatorics and geometry of the mesh T, and in 1987 Lou
Billera used algebraic topology to prove the conjecture
(and win the Fulkerson prize). I'll describe recent progress
on the study of spline spaces, including a quick and self
contained introduction to some basic but quite useful tools
from topology.

Thu, 03 Nov 2016
16:00
L6

Arithmetic applications of $\omega$-integral curves in varieties (Joint with Logic)

Natalia Garcia-Fritz
(University of Toronto)
Abstract

In 2000, Vojta solved the n-squares problem under the Bombieri-Lang conjecture, by explicitly finding all the curves of genus 0 or 1 on the surfaces related to this problem. The fundamental notion used by him is $\omega$-integrality of curves. 


In this talk, I will show a generalization of Vojta's method to find all curves of low genus in some surfaces, with arithmetic applications.


I will also explain how to use $\omega$-integrality to obtain a bound of the height of a non-constant morphism from a curve to $\mathbb{P}^2$ in terms of the number of intersections (without multiplicities) of its image with a divisor of a particular kind.
This proves some new special cases of Vojta's conjecture for function fields.