Thu, 24 Nov 2016

16:00 - 17:00
L3

An engineer's dive into Oxford Applied Maths, and becoming faculty at a Medical School

Athanasios Tsanas
(University of Oxford)
Abstract

In this talk, I am reflecting on the last 8 extremely enjoyable years I spent in the department (DPhil, OCIAM, 2008-2012, post-doc, WCMB, 2012-2016). My story is a little unusual: coming from an Engineering undergraduate background, spending 8 years in the Maths department, and now moving to a faculty position at the Medical School. However, I think it highlights well the enormous breadth and applicability of mathematics beyond traditional disciplinary boundaries. I will discuss different projects during my time in Oxford, focusing on time-series, signal processing, and statistical machine learning methods, with diverse applications in real-world problems.

Thu, 24 Nov 2016

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Stochastic methods for inverting matrices as a tool for designing Stochastic quasi-Newton methods

Dr Robert Gower
(INRIA - Ecole Normale Supérieure)
Abstract

I will present a broad family of stochastic algorithms for inverting a matrix, including specialized variants which maintain symmetry or positive definiteness of the iterates. All methods in the family converge globally and linearly, with explicit rates. In special cases, the methods obtained are stochastic block variants of several quasi-Newton updates, including bad Broyden (BB), good Broyden (GB), Powell-symmetric-Broyden (PSB), Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS). After a pause for questions, I will then present a block stochastic BFGS method based on the stochastic method for inverting positive definite matrices. In this method, the estimate of the inverse Hessian matrix that is maintained by it, is updated at each iteration using a sketch of the Hessian, i.e., a randomly generated compressed form of the Hessian. I will propose several sketching strategies, present a new quasi-Newton method that uses stochastic block BFGS updates combined with the variance reduction approach SVRG to compute batch stochastic gradients, and prove linear convergence of the resulting method. Numerical tests on large-scale logistic regression problems reveal that our method is more robust and substantially outperforms current state-of-the-art methods.

Thu, 24 Nov 2016
12:00
L5

Very weak solutions to non-Newtonian fluids

Sebastian Schwarzacher
(Charles University, Prague)
Abstract
I will present a new result which was established in collaboration with M. Bulıcek and J. Burczak. We established an existence, uniqueness and optimal regularity results for very weak solutions to certain incompressible non-Newtonian fluids. We introduce structural assumptions of Uhlenbeck type on the stress tensor. These as-sumptions are sufficient and to some extend also necessary to built a unified theory. Our approach leads qualitatively to the same so called Lp-theory as the one that is available for the linear Stokes equation.
Wed, 23 Nov 2016

16:00 - 17:00

Quasi-convexity and Howson's Theorem

Giles Gardam
(Oxford University)
Abstract

This talk will introduce the notion of quasi-convex subgroups. As an application, we will prove that the intersection of two finitely generated subgroups of a free group is again finitely generated.
 

Wed, 23 Nov 2016
15:00
L5

Explicit isogenies in quadratic time in any characteristic

Luca de Feo
(Versailles-Saint-Quentin)
Abstract

Isogenies are algebraic group morphisms of elliptic curves. Let E, E' be two (ordinary) elliptic curves defined over a finite field of characteristic p, and suppose that there exists an isogeny ψ between E and E'. The explicit isogeny problem asks to compute a rational function expression for ψ. Various specializations of this problem appear naturally in point counting and elliptic curve cryptography. There exist essentially two families of algorithms to compute isogenies. Algorithms based on Weierstraß' differential equation are very fast and well suited in the point count setting, but are clumsier in general. Algorithms based on interpolation work more generally, but have exponential complexity in log(p) (the characteristic of the finite field). We propose a new interpolation-based algorithm that solves the explicit isogeny problem in polynomial time in all the involved parameters. Our approach is inspired by a previous algorithm of Couveignes', that performs interpolation on the p-torsion on the curves. We replace the p-torsion in Couveignes' algorithm with the ℓ-torsion for some small prime ℓ; however this adaptation requires some non-trivial work on isogeny graphs in order to yield a satisfying complexity. Joint work with Cyril Hugounenq, Jérôme Plût and Éric Schost.

Wed, 23 Nov 2016
11:30
N3.12

tba

Phillip Dittmann
(University of Oxford)
Tue, 22 Nov 2016

15:45 - 16:45
L4

The Cohomological McKay Correspondence and Symplectic Cohomology

Mark McLean
(Stony Brook)
Abstract

Suppose that we have a finite quotient singularity $\mathbb C^n/G$ admitting a crepant resolution $Y$ (i.e. a resolution with $c_1 = 0$). The cohomological McKay correspondence says that the cohomology of $Y$ has a basis given by irreducible representations of $G$ (or conjugacy classes of $G$). Such a result was proven by Batyrev when the coefficient field $\mathbb F$ of the cohomology group is $\mathbb Q$. We give an alternative proof of the cohomological McKay correspondence in some cases by computing symplectic cohomology+ of $Y$ in two different ways. This proof also extends the result to all fields $\mathbb F$ whose characteristic does not divide $|G|$ and it gives us the corresponding basis of conjugacy classes in $H^*(Y)$. We conjecture that there is an extension to certain non-crepant resolutions. This is joint work with Alex Ritter.

Tue, 22 Nov 2016
14:30
L6

Colouring perfect graphs with a bounded number of colours

Paul Seymour
(Princeton University)
Abstract

It follows from the ellipsoid method and results of Grotschel, Lovasz and Schrijver that one can find an optimal colouring of a perfect graph in polynomial time. But no ''combinatorial'' algorithm to do this is known.

Here we give a combinatorial algorithm to do this in an n-vertex perfect graph in time O(n^{k+1}^2) where k is the clique number; so polynomial-time for fixed k. The algorithm depends on another result, a polynomial-time algorithm to find a ''balanced skew partition'' in a perfect graph if there is one.

Joint work with Maria Chudnovsky, Aurelie Lagoutte, and Sophie Spirkl.

Tue, 22 Nov 2016

12:00 - 13:00
L4

The number theory of superstring scattering amplitudes

Federico Zerbini
(Bonn)
Abstract

The Feynman diagram expansion of scattering amplitudes in perturbative superstring theory can be written (for closed strings) as a series of integrals over compactified moduli spaces of Riemann surfaces with marked points, indexed by the genus. Therefore in genus 0 it is reasonable to find, as it often happens in QFT computations, periods of M_{0,N}, which are known to be multiple zeta values. In this talk I want to report on recent advances in the genus 1 amplitude, which are related to the development of 2 different generalizations of classical multiple zeta values, namely elliptic multiple zeta values and conical sums.

Mon, 21 Nov 2016

16:00 - 17:00
L4

Variational integrals with linear growth

Miroslav Bulíček
(Charles University in Prague)
Abstract
We investigate the properties of certain elliptic systems leading, a priori, to solutions that belong to the space of Radon measures. We show that if the problem is equipped with a so-called Uhlenbeck structure, then the solution can in fact be understood as a standard weak solution, with one proviso: analogously as in the case of minimal surface equations, the attainment of the boundary value is penalized by a measure supported on (a subset of) the boundary, which, for the problems under consideration here, is the part of the boundary where a Neumann boundary condition is imposed. Finally, we will connect such elliptic systems with certain problems in elasticity theory – the limiting strain models.
Mon, 21 Nov 2016

15:45 - 16:45
L6

Configuration spaces of hard disks

Matthew Kahle
(Ohio State University)
Abstract

Configuration spaces of points in a manifold are well studied. Giving the points thickness has obvious physical meaning: the configuration space of non-overlapping particles is equivalent to the phase space, or energy landscape, of a hard spheres gas. But despite their intrinsic appeal, relatively little is known so far about the topology of such spaces. I will overview some recent work in this area, including a theorem with Yuliy Baryshnikov and Peter Bubenik that related the topology of these spaces to mechanically balanced, or jammed, configurations. I will also discuss work in progress with Robert MacPherson on hard disks in an infinite strip, where we understand the asymptotics of the Betti numbers as the number of disks tends to infinity. In the end, we see a kind of topological analogue of a liquid-gas phase transition.

Mon, 21 Nov 2016

15:45 - 16:45
L1

The Loewner energy of chords in simply connected domain

YILIN WANG
(ETH Zurich)
Abstract

We study some features of the energy of a deterministic chordal Loewner chain, which is defined as the Dirichlet energy of its driving function in a very directional way. Using an interpretation of this energy as a large deviation rate function for SLE_k as k goes to 0, we show that the energy of a deterministic curve from one boundary point A of a simply connected domain D to another boundary point B, is equal to the energy of its time-reversal i.e. of the same curve but viewed as going from B to A in D. In particular it measures how far does the chord differ from the hyperbolic geodesic. I will also discuss the relation between the energy of the curve with its regularity, some questions are still open. If time allows, I will present the Loewner energy for loops on the Riemann sphere, and open questions related to it as well.


 

Mon, 21 Nov 2016
14:15
L4

Minimal Log Discrepancy of Isolated Singularities and Reeb Orbits

Mark McLean
(Stony Brook)
Abstract

Let A be an affine variety inside a complex N dimensional vector space which either has an isolated singularity at the origin or is smooth at the origin. The intersection of A with a very small  sphere turns out to be a contact manifold called the link of A. Any contact manifold contactomorphic to the link of A is said to be Milnor fillable by A. If the first Chern class of our link is 0 then we can assign an invariant of our singularity called the minimal
discrepancy. We relate the minimal discrepancy with indices of certain Reeb orbits on our link. As a result we show that the standard contact
5 dimensional sphere has a unique Milnor filling up to normalization. This generalizes a Theorem by Mumford.

Mon, 21 Nov 2016

14:15 - 15:15
L1

Log-concave density estimation

RICHARD SAMWORTH
(Cambridge University)
Abstract

The class of log-concave densities on $\mathbb{R}^d$ is a very natural infinite-dimensional generalisation of the class of Gaussian densities.  I will show that it also allows the statistician to have the best of both the parametric and nonparametric worlds, in that one can obtain a fully automatic density estimator in the class (via maximum likelihood), with no tuning parameters to choose.  I'll discuss its computation, methodological consequences and theoretical properties, and in particular very recent results on minimax rates of convergence and adaptation.

 

Mon, 21 Nov 2016
12:45
L3

Calabi-Yau Moduli Spaces from 2D Gauge Theories

Hans Jockers
(Bonn)
Abstract

In this talk I will introduce methods to use 2d gauge theories as a means to describe Calabi-Yau varieties and their moduli spaces. As I review, this description furnishes a natural framework to predict derived equivalences between pairs of (sometimes even non-birational) Calabi-Yau varieties. A prominent example of this kind is realized by the Rødland non-birational pair of Calabi-Yau threefolds.
Using the 2d gauge theory description, I will propose further examples of derived equivalences among non-birational Calabi-Yau varieties.

 
Mon, 21 Nov 2016

11:00 - 12:00
C4

Motivic Eisenstein cohomology of Hilbert modular varieties

Guido Kings
(Universitaet Regensburg)
Abstract

Beilinson has given a motivic construction of the Eisenstein cohomology on modular curves. This makes it possible to define Eisenstein classes in Deligne-Beilinson, syntomic, and ´etale cohomology. These Eisenstein classes can be computed in terms of real analytic and p-adic Eisenstein series or modular units. The resulting explicit expressions allow to prove results on special values of classical and p-adic L-functions and lead to explicit reciprocity laws. Harder has more generally defined and studied the Eisenstein cohomology for Hilbert modular varieties by analytic methods. In this talk we will explain a motivic and in particular algebraic construction of Harder’s Eisenstein cohomology classes, which generalizes Beilinson’s result. This opens the way to applications, similar as for modular curves, in the case of Hilbert modular varieties.

Fri, 18 Nov 2016

16:00 - 17:00
L1

North meets South Colloquium

James Maynard + Thomas Woolley
(Mathematical Institute, Oxford)
Abstract

Approximate prime numbers -- James Maynard

I will talk about the idea of an 'almost prime' number, and how this can be used to make progress on some famous problems about the primes themselves.

Mathematical biology: An early career retrospective -- Thomas Woolley

No image

Since 2008 Thomas has focused his attention to the application of mathematical techniques to biological problems. Through numerous fruitful collaborations he has been extremely fortunate to work alongside some amazing researchers. But what has he done in the last 8 years? What lessons has he learnt? What knowledge has he produced?

This talk will encompass a brief overview of a range of applications, from animal skin patterns to cellular mechanics, via zombies and Godzilla.

Fri, 18 Nov 2016
14:15
C3

Analogue models of hydraulic fracturing

Finn Box
(University of Oxford)
Abstract

The spreading of a viscous fluid in between a rigid, horizontal substrate and an overlying elastic sheet is presented as a simplified model of the hydraulic fracturing process. In particular, the talk will focus on the case of a permeable substrate for which leak-off arrests the propagation of the fluid and permits the development of a steady state. The different regimes of  gravitationally-driven and elastically-driven flow will be explored, as will the cases of a stiff and flexible sheet, before a discussion of the influence that particles included in the fluid have on the fracture propagation. 

Fri, 18 Nov 2016

13:00 - 14:00
L6

Second Year DPhil Student Talks

Zhenru Wang and Vadim Kaushansky
(Mathematical Institute)
Abstract

Zhenru Wang
Title: Multi-Index Monte Carlo Estimators for a Class of Zakai SPDEs
Abstract:   
We first propose a space-time Multi-Index Monte Carlo (MIMC) estimator for a one-dimensional parabolic SPDE of Zakai type. We compare the computational cost required for a prescribed accuracy with the Multilevel Monte Carlo (MLMC) method of Giles and Reisinger (2012). Then we extend the estimator to a two-dimensional variant of SPDE. The theoretical analysis shows the benefit of using MIMC in high dimensional problems over MLMC methods. Numerical tests confirm these finding empirically.


Vadim Kaushansky
Title: An extended structural default model with jump risk
Abstact:
We consider a structural default model in an interconnected banking network as in Itkin and Lipton (2015), where there are mutual obligations between each pair of banks. We analyse the model numerically for the case of two banks with jumps in their asset value processes. Specifically, we develop a finite difference method for the resulting two-dimensional partial integro-differential equation, and study its stability and consistency. By applying this method, we compute joint and marginal survival probabilities, as well as prices of credit default swaps (CDS) and first-to-default swaps (FTD), Credit and Debt Value Adjustments (CVA and DVA).