Mon, 27 May 2024

14:00 - 15:00
Lecture Room 3

Dynamic Sparsity: Routing Information through Neural Pathways

Edoardo Ponti
(University of Edinburgh)
Abstract
Recent advancements in machine learning have caused a shift from traditional sparse modelling, which focuses on static feature selection in neural representations, to a paradigm based on selecting input or task-dependent pathways within neural networks. 
In fact, the ability to selectively (de)activate portions of neural computation graphs provides several advantages, including conditional computation, efficient parameter scaling, and compositional generalisation. 
 
In this talk, I will explore how sparse subnetworks can be identified dynamically and how parametric routing functions allow for recombining and locally adapting them in Large Language Models.


 

Fri, 24 May 2024
16:00
L1

North meets South

Alexandru Pascadi and Tim LaRock
Abstract

There will be free pizza provided for all attendees directly after the event just outside L1, so please do come along!

 

North Wing
Speaker: Alexandru Pascadi 
Title: Points on modular hyperbolas and sums of Kloosterman sums
Abstract: Given a positive integer c, how many integer points (x, y) with xy = 1 (mod c) can we find in a small box? The dual of this problem concerns bounding certain exponential sums, which show up in methods from the spectral theory of automorphic forms. We'll explore how a simple combinatorial trick of Cilleruelo-Garaev leads to good bounds for these sums; following recent work of the speaker, this ultimately has consequences about multiple problems in analytic number theory (such as counting primes in arithmetic progressions to large moduli, and studying the greatest prime factors of quadratic polynomials).

 

South Wing
Speaker: Tim LaRock
Title: Encapsulation Structure and Dynamics in Hypergraphs
Abstract: Within the field of Network Science, hypergraphs are a powerful modelling framework used to represent systems where interactions may involve an arbitrary number of agents, rather than exactly two agents at a time as in traditional network models. As part of a recent push to understand the structure of these group interactions, in this talk we will explore the extent to which smaller hyperedges are subsets of larger hyperedges in real-world and synthetic hypergraphs, a property that we call encapsulation. Building on the concept of line graphs, we develop measures to quantify the relations existing between hyperedges of different sizes and, as a byproduct, the compatibility of the data with a simplicial complex representation–whose encapsulation would be maximum. Finally, we will turn to the impact of the observed structural patterns on diffusive dynamics, focusing on a variant of threshold models, called encapsulation dynamics, and demonstrate that non-random patterns can accelerate spreading through the system.

 

Fri, 24 May 2024

15:00 - 16:00
L5

Applying stratified homotopy theory in TDA

Lukas Waas
(Univeristy of Heidelberg)
Abstract

 

The natural occurrence of singular spaces in applications has led to recent investigations on performing topological data analysis (TDA) on singular data sets. However, unlike in the non-singular scenario, the homotopy type (and consequently homology) are rather course invariants of singular spaces, even in low dimension. This suggests the use of finer invariants of singular spaces for TDA, making use of stratified homotopy theory instead of classical homotopy theory.
After an introduction to stratified homotopy theory, I will describe the construction of a persistent stratified homotopy type obtained from a sample with two strata. This construction behaves much like its non-stratified counterpart (the Cech complex) and exhibits many properties (such as stability, and inference results) necessary for an application in TDA.
Since the persistent stratified homotopy type relies on an already stratified point-cloud, I will also discuss the question of stratification learning and present a convergence result which allows one to approximately recover the stratifications of a larger class of two-strata stratified spaces from sufficiently close non-stratified samples. In total, these results combine to a sampling theorem guaranteeing the (approximate) inference of (persistent) stratified homotopy types from non-stratified samples for many examples of stratified spaces arising from geometrical scenarios.

Fri, 24 May 2024

12:00 - 13:00
Quillen Room

Young wall realizations for representations of (affine) quantum groups

Duncan Laurie
(University of Oxford)
Abstract

Kashiwara’s theory of crystal bases provides a powerful tool for studying representations of quantum groups. Crystal bases retain much of the structural information of their corresponding representations, whilst being far more straightforward and ‘stripped-back’ objects (coloured digraphs). Their combinatorial description often enables us to obtain concrete realizations which shed light on the representations, and moreover turn challenging questions in representation theory into far more tractable problems.

After reviewing the construction and basic theory regarding quantum groups, I will introduce and motivate crystal bases as ‘nice q=0 bases’ for their representations. I shall then present (in both finite and affine types) the construction of Young wall models in the important case of highest weight representations. Time permitting, I will finish by discussing some applications across algebra and geometry.

Thu, 23 May 2024
17:00
Lecture Theatre 1, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG

Infinite Jesters: what can philosophers learn from a puzzle involving infinitely many clowns? - Ofra Magidor and Alexander Kaiserman

Ofra Magidor and Alexander Kaiserman
(University of Oxford)
Further Information

Ofra and Alexander consider a simple but intriguing mathematical argument, which purports to show how infinitely many clowns appear to have some surprising powers. They'll discuss what conclusions philosophers can and cannot draw from this case, and connect the discussion to a number of key philosophical issues such as the problem of free will and the Grandfather Paradox for time travel.

Ofra Magidor is Waynflete Professor of Metaphysical Philosophy at the University of Oxford and Fellow of Magdalen College. Alex Kaiserman is Associate Professor of Philosophy at the University of Oxford and Fairfax Fellow and Tutor in Philosophy at Balliol College. While they are both philosophers, Ofra holds a BSc in Philosophy, Mathematics, and Computer Science and Alex holds an MPhysPhil in Physics and Philosophy, so they are no strangers to STEM subjects.

Please email @email to register to attend in person.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Thursday 13 June at 5-6pm and any time after (no need to register for the online version).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Thu, 23 May 2024
16:00
L5

Square roots for symplectic L-functions and Reidemeister torsion

Amina Abdurrahman
(IHES)
Abstract

We give a purely topological formula for the square class of the central value of the L-function of a symplectic representation on a curve. We also formulate a topological analogue of the statement, in which the central value of the L-function is replaced by Reidemeister torsion of 3-manifolds. This is related to the theory of epsilon factors in number theory and Meyer’s signature formula in topology among other topics. We will present some of these ideas and sketch aspects of the proof. This is joint work with Akshay Venkatesh.

Thu, 23 May 2024

14:00 - 15:00
Lecture Room 3

The bilevel optimization renaissance through machine learning: lessons and challenges

Alain Zemkoho
(University of Southampton)
Abstract

Bilevel optimization has been part of machine learning for over 4 decades now, although perhaps not always in an obvious way. The interconnection between the two topics started appearing more clearly in publications since about 20 years now, and in the last 10 years, the number of machine learning applications of bilevel optimization has literally exploded. This rise of bilevel optimization in machine learning has been highly positive, as it has come with many innovations in the theoretical and numerical perspectives in understanding and solving the problem, especially with the rebirth of the implicit function approach, which seemed to have been abandoned at some point.
Overall, machine learning has set the bar very high for the whole field of bilevel optimization with regards to the development of numerical methods and the associated convergence analysis theory, as well as the introduction of efficient tools to speed up components such as derivative calculations among other things. However, it remains unclear how the techniques from the machine learning—based bilevel optimization literature can be extended to other applications of bilevel programming. 
For instance, many machine learning loss functions and the special problem structures enable the fulfillment of some qualification conditions that will fail for multiple other applications of bilevel optimization. In this talk, we will provide an overview of machine learning applications of bilevel optimization while giving a flavour of corresponding solution algorithms and their limitations. 
Furthermore, we will discuss possible paths for algorithms that can tackle more complicated machine learning applications of bilevel optimization, while also highlighting lessons that can be learned for more general bilevel programs.

Thu, 23 May 2024

12:00 - 13:00
L3

Mathematical models for biological cooperation: lessons from bacteria

Maria Tatulea-Codrean
(University of Cambridge)
Further Information

Maria is a member of the Biological Fluid Mechanics group. Her current research interests revolve around the themes of flows (flows around and in between filaments, flows in membranes), motors (in particular, bacterial flagellar motors) and oscillators (synchronization of coupled non-linear oscillators, and biological rhythms more broadly).

Abstract
 
Cooperation occurs at all scales in the natural world, from the cooperative binding of ligands on
the molecular scale, to the coordinated migration of animals across continents. To understand
the key principles and mechanisms underlying cooperative behaviours, researchers tend to
focus on understanding a small selection of model organisms. In this talk, we will look through a
mathematician’s lens at one of the most well-studied model organisms in biology—the multiflagellated bacterium Escherichia coli.
 
First, we will introduce the basic features of swimming at the microscopic scale, both biological
(the flagellum) and mathematical (the Stokes equations). Then, we will describe two recent
theoretical developments on the cooperative dynamics of bacterial flagella: an
elastohydrodynamic mechanism that enables independent bacterial flagella to coordinate their
rotation, and a load-sharing mechanism through which multiple flagellar motors split the
burden of torque generation in a swimming bacterium. These results are built on a foundation of
classical asymptotic approaches (e.g., multiple-scale analysis) and prominent mathematical
models (e.g., Adler’s equation) that will be familiar to mathematicians working in many areas of

applied mathematics.

Thu, 23 May 2024
12:00
L5

Cancelled

Andrea Clini
(University of Oxford)
Abstract

Cancelled

Wed, 22 May 2024

16:00 - 17:00
L6

Finite quotients of Coxeter groups

Sam Hughes
(University of Oxford)
Abstract

We will try to solve the isomorphism problem amongst Coxeter groups by looking at finite quotients.  Some success is found in the classes of affine and right-angled Coxeter groups.  Based on joint work with Samuel Corson, Philip Moeller, and Olga Varghese.

Tue, 21 May 2024
16:00
L6

Fermions in low dimensions and non-Hermitian random matrices

Gernot Akemann
(Bielefeld University/University of Bristol)
Abstract

The ground state of N noninteracting Fermions in a rotating harmonic trap enjoys a one-to-one mapping to the complex Ginibre ensemble. This setup is equivalent to electrons in a magnetic field described by Landau levels. The mean, variance and higher order cumulants of the number of particles in a circular domain can be computed exactly for finite N and in three different large-N limits. In the bulk and at the edge of the spectrum the result is universal for a large class of rotationally invariant potentials. In the bulk the variance and entanglement entropy are proportional and satisfy an area law. The same universality can be proven for the quaternionic Ginibre ensemble and its corresponding generalisation. For the real Ginibre ensemble we determine the large-N limit at the origin and conjecture its universality in the bulk and at the edge.

 

Tue, 21 May 2024

16:00 - 17:00
C2

Nuclear dimension of Cuntz-Krieger algebras associated with shift spaces

Sihan Wei
(University of Glasgow)
Abstract

Associated to every shift space, the Cuntz-Krieger algebra (C-K algebra for abbreviation) is an invariant of conjugacy defined and developed by K. Matsumoto, S. Eilers, T. Carlsen, and many of their collaborators in the last decade. In particular, Carlsen defined the C-K algebra to be the full groupoid C*-algebra of the “cover”, which is a topological system consisting of a surjective local homeomorphism on a zero-dimensional space induced by the shift space. 

In 2022, K. Brix proved that the C-K algebra of the Sturmian shift has finite nuclear dimension, where the Sturmian shift is the (unique) minimal shift space with the smallest complexity function: p_X(n)=n+1. In recent results (joint with Z. He), we show that for any minimal shift space with finitely many left special elements, its C-K algebra always have finite nuclear dimension. In fact, this can be further applied to the class of aperiodic shift spaces with non-superlinear growth complexity. 

Tue, 21 May 2024
15:00
L5

Rigidity and automorphisms of group von Neumann algebras

Denis Osin
Abstract

I will survey some recent results on rigidity and automorphisms of von Neumann algebras of groups with Kazhdan property (T) obtained in a series of joint papers with I. Chifan, A. Ioana, and B. Sun. Specifically, we show that certain groups, constructed via a group-theoretic version of Dehn filling in 3-manifolds, satisfy several conjectures proposed by A. Connes, V. Jones, and S. Popa. Previously, no nontrivial examples of groups satisfying these conjectures were known. At the core of our approach is the new notion of a wreath-like product of groups, which seems to be of independent interest.

Tue, 21 May 2024

14:30 - 15:00
L1

Computing with H2-conforming finite elements in two and three dimensions

Charlie Parker
(Mathematical Institute (University of Oxford))
Abstract

Fourth-order elliptic problems arise in a variety of applications from thin plates to phase separation to liquid crystals. A conforming Galerkin discretization requires a finite dimensional subspace of H2, which in turn means that conforming finite element subspaces are C1-continuous. In contrast to standard H1-conforming C0-elements, C1-elements, particularly those of high order, are less understood from a theoretical perspective and are not implemented in many existing finite element codes. In this talk, we address the implementation of the elements. In particular, we present algorithms that compute C1-finite element approximations to fourth-order elliptic problems and which only require elements with at most C0-continuity. The algorithms are suitable for use in almost all standard finite element packages. Iterative methods and preconditioners for the subproblems in the algorithm will also be presented.

Tue, 21 May 2024

14:00 - 14:30
L1

Goal-oriented adaptivity for stochastic collocation finite element methods

Thomas Round
(Birmingham University)
Abstract
Finite element methods are often used to compute approximations to solutions of problems involving partial differential equations (PDEs). More recently, various techniques involving finite element methods have been utilised to solve PDE problems with parametric or uncertain inputs. One such technique is the stochastic collocation finite element method, a sampling based approach which yields approximations that are represented by a finite series expansion in terms of a parameter-dependent polynomial basis.
 
In this talk we address the topic of goal-oriented strategies in the context of the stochastic collocation finite element method. These strategies are used to approximate quantities of interest associated with solutions to PDEs with parameter dependent inputs. We use existing ideas to estimate approximation errors for the corresponding primal and dual problems and utilise products of these estimates in an adaptive algorithm for approximating quantities of interest. We further demonstrate the utility of the proposed algorithm using numerical examples. These examples include problems involving affine and non-affine diffusion coefficients, as well as linear and non-linear quantities of interest.
Tue, 21 May 2024

14:00 - 15:00
L5

Spin link homology and webs in type B

Elijah Bodish
(MIT)
Abstract

In their study of GL(N)-GL(m) Howe duality, Cautis-Kamnitzer-Morrison observed that the GL(N) Reshetikhin-Turaev link invariant can be computed in terms of quantum gl(m). This idea inspired Cautis and Lauda-Queffelec-Rose to give a construction of GL(N) link homology in terms of Khovanov-Lauda's categorified quantum gl(m). There is a Spin(2n+1)-Spin(m) Howe duality, and a quantum analogue that was first studied by Wenzl. In the first half of the talk, I will explain how to use this duality to compute the Spin(2n+1) link polynomial, and present calculations which suggest that the Spin(2n+1) link invariant is obtained from the GL(2n) link invariant by folding. In the second part of the talk, I will introduce the parallel categorified constructions and explain how to use them to define Spin(2n+1) link homology.

This is based on joint work in progress with Ben Elias and David Rose.

Tue, 21 May 2024

14:00 - 15:00
C4

Fixation probability and suppressors of natural selection on higher-order networks

Naoki Masuda
(The State University of New York at Buffalo)
Abstract

Population structure substantially affects evolutionary dynamics. Networks that promote the spreading of fitter mutants are called amplifiers of selection, and those that suppress the spreading of fitter mutants are called suppressors of selection. It has been discovered that most networks are amplifiers under the so-called birth-death updating combined with uniform initialization, which is a common condition. We discuss constant-selection evolutionary dynamics with binary node states (which is equivalent to the biased voter model with two opinions in statistical physics research community) on higher-order networks, i.e., hypergraphs, temporal networks, and multilayer networks. In contrast to the case of conventional networks, we show that a vast majority of these higher-order networks are suppressors of selection, which we show by random-walk and Martingale analyses as well as by numerical simulations. Our results suggest that the modeling framework for structured populations in addition to the specific network structure is an important determinant of evolutionary dynamics.
 

Tue, 21 May 2024
13:00
L2

Scale and conformal invariance in 2-dimensional sigma models

George Papadopoulos
(King's College London)
Abstract

I shall review some aspects of the relationship between scale and conformal invariance in 2-dimensional sigma models.  Then, I shall explain how such an investigation is related to the Perelman's ideas of proving the Poincare' conjecture.  Using this, I shall demonstrate that scale invariant sigma models  with B-field coupling and  compact target space  are conformally invariant. Several examples will also be presented that elucidate the results.  The talk is based on the arXiv paper 2404.19526.

Tue, 21 May 2024
11:00
L5

Free probability, path developments and signature kernels as universal scaling limits

William Turner
(Imperial College, London)
Abstract

Scaling limits of random developments of a path into a matrix Lie Group have recently been used to construct signature-based kernels on path space, while mitigating some of the dimensionality challenges that come with using signatures directly. General linear group developments have been shown to be connected to the ordinary signature kernel (Muça Cirone et al.), while unitary developments have been used to construct a path characteristic function distance (Lou et al.). By leveraging the tools of random matrix theory and free probability theory, we are able to provide a unified treatment of the limits in both settings under general assumptions on the vector fields. For unitary developments, we show that the limiting kernel is given by the contraction of a signature against the monomials of freely independent semicircular random variables. Using the Schwinger-Dyson equations, we show that this kernel can be obtained by solving a novel quadratic functional equation. 

This is joint work with Thomas Cass.

Tue, 21 May 2024

10:30 - 17:30
L3

One-Day Meeting in Combinatorics

Multiple
Further Information

The speakers are Carla Groenland (Delft), Shoham Letzter (UCL), Nati Linial (Hebrew University of Jerusalem), Piotr Micek (Jagiellonian University), and Gabor Tardos (Renyi Institute). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.

Mon, 20 May 2024
16:00
L2

Inhomogeneous multiplicative diophantine approximation

Kate Thomas
(University of Oxford)
Abstract

Introducing an inhomogeneous shift allows for generalisations of many multiplicative results in diophantine approximation. In this talk, we discuss an inhomogeneous version of Gallagher's theorem, established by Chow and Technau, which describes the rates for which we can approximate a typical product of fractional parts. We will sketch the methods used to prove an earlier version of this result due to Chow, using continued fraction expansions and geometry of numbers to analyse the structure of Bohr sets and bound sums of reciprocals of fractional parts.

Mon, 20 May 2024
15:30
L5

Hyperbolic manifolds, maps to the circle, and fibring

Giovanni Italiano
((Oxford University))
Abstract

We will discuss the problem of finding hyperbolic manifolds fibring over the circle; and show a method to construct and analyse maps from particular hyperbolic manifolds to S^1, which relies on Bestvina-Brady Morse theory. 
This technique can be used to build and detect fibrations, algebraic fibrations, and Morse functions with minimal number of critical points, which are interesting in the even dimensional case. 
After an introduction to the problem, and presentation of the main results, we will use the remaining time to focus on some easy 3-dimensional examples, in order to explicitly show the construction at work.
 

Mon, 20 May 2024
15:30
L3

Multiscale analysis of wave propagation in random media

Prof Josselin Garnier
(Centre de Mathematiques Appliquees, Ecole polytechnique, Institut Polytechnique de Paris)
Further Information

This is a joint seminar with OxPDE.

Abstract

In this talk we study wave propagation in random media using multiscale analysis.
We show that the wavefield can be described by a stochastic partial differential equation.
We can then address the following physical conjecture: for large propagation distances, the wavefield has Gaussian statistics, mean zero, and second-order moments determined by radiative transfer theory.
The results for the first two moments can be proved under general circumstances.
The Gaussian conjecture for the statistical distribution of the wavefield can be proved in some propagation regimes, but it turns out to be wrong in other regimes.