Thu, 30 Nov 2023
16:00
Lecture Room 4, Mathematical Institute

Duality of causal distributionally robust optimization

Yifan Jiang
(Mathematical Institute (University of Oxford))
Abstract

In this talk, we investigate distributionally robust optimization (DRO) in a dynamic context. We consider a general penalized DRO problem with a causal transport-type penalization. Such a penalization naturally captures the information flow generated by the models. We derive a tractable dynamic duality formula under a measure theoretic framework. Furthermore, we apply the duality to distributionally robust average value-at-risk and stochastic control problems.

Thu, 30 Nov 2023

16:00 - 17:00
C2

Noncommutative geometry meets harmonic analysis on reductive symmetric spaces

Shintaro Nishikawa
(University of Southampton)
Abstract

A homogeneous space G/H is called a reductive symmetric space if G is a (real) reductive Lie group, and H is a symmetric subgroup of G, meaning that H is the subgroup fixed by some involution on G. The representation theory on reductive symmetric spaces was studied in depth in the 1990s by Erik van den Ban, Patrick Delorme, and Henrik Schlichtkrull, among many others. In particular, they obtained the Plancherel formula for the L^2 space of G/H. An important aspect is that this generalizes the group case, obtained by Harish-Chandra, which corresponds to the case when G = G' x G' and H is the diagonal subgroup.

In our collaborative efforts with A. Afgoustidis, N. Higson, P. Hochs, Y. Song, we are studying this subject from the perspective of noncommutative geometry. I will describe this exciting new development, with a particular emphasis on describing what is new and how this is different from the traditional group case, i.e. the reduced group C*-algebra of G.

Thu, 30 Nov 2023
16:00
L5

Computing p-adic heights on hyperelliptic curves

Stevan Gajović
(Charles University Prague)
Abstract

In this talk, we present an algorithm to compute p-adic heights on hyperelliptic curves with good reduction. Our algorithm improves a previous algorithm of Balakrishnan and Besser by being considerably simpler and faster and allowing even degree models. We discuss two applications of our work: to apply the quadratic Chabauty method for rational and integral points on hyperelliptic curves and to test the p-adic Birch and Swinnerton-Dyer conjecture in examples numerically. This is joint work with Steffen Müller.

Thu, 30 Nov 2023
15:00
L4

A gentle introduction to Ricci flow

John Hughes
(University of Oxford)
Abstract

Richard Hamilton introduced the Ricci flow as a way to study the Poincaré conjecture, which says that every simply connected, compact three-manifold is homeomorphic to the three-sphere. In this talk, we will introduce the Ricci flow in a way that is accessible to anyone with basic knowledge of Riemannian geometry. We will give some examples, discuss finite time singularities, and give an application to a theorem of Hamilton which says that every compact Riemannian 3-manifold with positive Ricci curvature admits a metric of constant positive sectional curvature.

Thu, 30 Nov 2023
14:00
N3.12

Machine Learning in HEP-TH

Dewi Gould
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 30 Nov 2023
14:00
Lecture Room 3

Multilevel adaptivity for stochastic finite element methods

Alex Bespalov
(Birmingham University)
Abstract

This talk concerns the design and analysis of adaptive FEM-based solution strategies for partial differential equations (PDEs) with uncertain or parameter-dependent inputs. We present two conceptually different strategies: one is projection-based (stochastic Galerkin FEM) and the other is sampling-based (stochastic collocation FEM). These strategies have emerged and become popular as effective alternatives to Monte-Carlo sampling in the context of (forward) uncertainty quantification. Both stochastic Galerkin and stochastic collocation approximations are typically represented as finite (sparse) expansions in terms of a parametric polynomial basis with spatial coefficients residing in finite element spaces. The focus of the talk is on multilevel approaches where different spatial coefficients may reside in different finite element spaces and, therefore, the underlying spatial approximations are allowed to be refined independently from each other.

 

We start with a more familiar setting of projection-based methods, where exploiting the Galerkin orthogonality property and polynomial approximations in terms of an orthonormal basis facilitates the design and analysis of adaptive algorithms. We discuss a posteriori error estimation as well as the convergence and rate optimality properties of the generated adaptive multilevel Galerkin approximations for PDE problems with affine-parametric coefficients. We then show how these ideas of error estimation and multilevel adaptivity can be applied in a non-Galerkin setting of stochastic collocation FEM, in particular, for PDE problems with non-affine parameterization of random inputs and for problems with parameter-dependent local spatial features.

 

The talk is based on a series of joint papers with Dirk Praetorius (TU Vienna), Leonardo Rocchi (Birmingham), Michele Ruggeri (University of Strathclyde, Glasgow), David Silvester (Manchester), and Feng Xu (Manchester).

Thu, 30 Nov 2023

12:00 - 13:00
L3

Gravitational Landau Damping

Matthew Schrecker
(University of Bath)
Abstract

In the 1960s, Lynden-Bell, studying the dynamics of galaxies around steady states of the gravitational Vlasov-Poisson equation, described a phenomenon he called "violent relaxation," a convergence to equilibrium through phase mixing analogous in some respects to Landau damping in plasma physics. In this talk, I will discuss recent work on this gravitational Landau damping for the linearised Vlasov-Poisson equation and, in particular, the critical role of regularity of the steady states in distinguishing damping from oscillatory behaviour in the perturbations. This is based on joint work with Mahir Hadzic, Gerhard Rein, and Christopher Straub.

Thu, 30 Nov 2023

12:00 - 13:00
L1

Droplet dynamics in the presence of gas nanofilms: merging, wetting, bouncing & levitation

James Sprittles
(University of Warwick)
Abstract

Recent advances in experimental techniques have enabled remarkable discoveries and insight into how the dynamics of thin gas/vapour films can profoundly influence the behaviour of liquid droplets: drops impacting solids can “skate on a film of air” [1], so that they can “bounce off walls” [2,3]; reductions in ambient gas pressure can suppress splashing [4] and initiate the merging of colliding droplets [5]; and evaporating droplets can levitate on their own vapour film [7] (the Leidenfrost effect). Despite these advances, the precise physical mechanisms governing these phenomena remains a topic of debate.  A theoretical approach would shed light on these issues, but due to the strongly multiscale nature of these processes brute force computation is infeasible.  Furthermore, when films reach the scale of the mean free path in the gas (i.e. ~100nm) and below, new nanoscale physics appears that renders the classical Navier-Stokes paradigm inaccurate.

In this talk, I will overview our development of efficient computational models for the aforementioned droplet dynamics in the presence of gas nanofilms into which gas-kinetic, van der Waals and/or evaporative effects can be easily incorporated [8,9].  It will be shown that these models can reproduce experimental observations – for example, the threshold between bouncing and wetting for drop impact on a solid is reproduced to within 5%, whilst a model excluding either gas-kinetic or van der Waals effects is ~170% off!  These models will then be exploited to make new experimentally-verifiable predictions, such as how we expect drops to behave in reduced pressure environments.  Finally, I will conclude with some exciting directions for future wor


[1] JM Kolinski et al, Phys. Rev. Lett.  108 (2012), 074503. [2] JM Kolinski et al, EPL.  108 (2014), 24001. [3] J de Ruiter et al, Nature Phys.  11 (2014), 48. [4] L Xu et al, Phys. Rev. Lett. 94 (2005), 184505. [5] J Qian & CK Law, J. Fluid. Mech. 331 (1997), 59.  [6] KL Pan J. Appl. Phys. 103 (2008), 064901. [7] D Quéré, Ann. Rev. Fluid Mech. 45 (2013), 197. [8] JE Sprittles, Phys. Rev. Lett.  118 (2017), 114502.  [9] MV Chubynsky et al, Phys. Rev. Lett.. 124 (2020), 084501.
Thu, 30 Nov 2023

11:00 - 12:00
C6

Homotopy type of categories of models

Jinhe Ye
(University of Oxford)
Abstract

For a complete theory T, Lascar associated with it a Galois group which we call the Lacsar group. We will talk about some of my work on recovering the Lascar group as the fundamental group of Mod(T) and some recent progress in understanding the higher homotopy groups.

Wed, 29 Nov 2023

16:00 - 17:00
L6

Combinatorial Hierarchical Hyperbolicity of the Mapping Class Group

Kaitlin Ragosta
(Brandeis University)
Abstract

The mapping class group of a surface has a hierarchical structure in which the geometry of the group can be seen by examining its action on the curve graph of every subsurface. This behavior was one of the motivating examples for a generalization of hyperbolicity called hierarchical hyperbolicity. Hierarchical hyperbolicity has many desirable consequences, but the definition is long, and proving that a group satisfies it is generally difficult. This difficulty motivated the introduction of a new condition called combinatorial hierarchical hyperbolicity by Behrstock, Hagen, Martin, and Sisto in 2020 which implies the original and is more straightforward to check. In recent work, Hagen, Mangioni, and Sisto developed a method for building a combinatorial hierarchically hyperbolic structure from a (sufficiently nice) hierarchically hyperbolic one. The goal of this talk is to describe their construction in the case of the mapping class group and illustrate some of the parallels between the combinatorial structure and the original. 

Tue, 28 Nov 2023

16:00 - 17:00
L1

Euclidean Ramsey Theory

Imre Leader
(University of Cambridge)
Abstract

Euclidean Ramsey Theory is a natural multidimensional version of Ramsey Theory. A subset of Euclidean space is called Ramsey if, for any $k$, whenever we partition Euclidean space of sufficiently high dimension into $k$ classes, one class much contain a congruent copy of our subset. It is still unknown which sets are Ramsey. We will discuss background on this and then proceed to some recent results.

Tue, 28 Nov 2023

16:00 - 17:00
L6

Random tree encodings and snakes

Christina Goldschmidt
(University of Oxford)
Abstract

There are several functional encodings of random trees which are commonly used to prove (among other things) scaling limit results.  We consider two of these, the height process and Lukasiewicz path, in the classical setting of a branching process tree with critical offspring distribution of finite variance, conditioned to have n vertices.  These processes converge jointly in distribution after rescaling by n^{-1/2} to constant multiples of the same standard Brownian excursion, as n goes to infinity.  Their difference (taken with the appropriate constants), however, is a nice example of a discrete snake whose displacements are deterministic given the vertex degrees; to quote Marckert, it may be thought of as a “measure of internal complexity of the tree”.  We prove that this discrete snake converges on rescaling by n^{-1/4} to the Brownian snake driven by a Brownian excursion.  We believe that our methods should also extend to prove convergence of a broad family of other “globally centred” discrete snakes which seem not to be susceptible to the methods of proof employed in earlier works of Marckert and Janson.

This is joint work in progress with Louigi Addario-Berry, Serte Donderwinkel and Rivka Mitchell.

 

Tue, 28 Nov 2023
15:00
L1

Fixed points of group homomorphisms and the Post Correspondence Problem

Laura Ciobanu
Abstract

The Post Correspondence Problem (PCP) is a classical problem in computer science that can be stated as: is it decidable whether given two morphisms g and h between two free semigroups $A$ and $B$, there is any nontrivial $x$ in $A$ such that $g(x)=h(x)$? This question can be phrased in terms of equalisers, asked in the context of free groups, and expanded: if the `equaliser' of $g$ and $h$ is defined to be the subgroup consisting of all $x$ where $g(x)=h(x)$, it is natural to wonder not only whether the equaliser is trivial, but what its rank or basis might be. 

While the PCP for semigroups is famously insoluble and acts as a source of undecidability in many areas of computer science, the PCP for free groups is open, as are the related questions about rank, basis, or further generalisations. In this talk I will give an overview of what is known about the PCP in hyperbolic groups, nilpotent groups and beyond (joint work with Alex Levine and Alan Logan).

Tue, 28 Nov 2023

14:00 - 15:00
L5

Hecke algebras for p-adic groups and explicit Local Langlands Correspondence

Yujie Xu
(Columbia University (New York))
Abstract

I will talk about several results on Hecke algebras attached to Bernstein blocks of (arbitrary) reductive p-adic groups, where we construct a local Langlands correspondence for these Bernstein blocks. Our techniques draw inspirations from the foundational works of Deligne, Kazhdan and Lusztig. 

As an application, we prove the Local Langlands Conjecture for G_2, which is the first known case in literature of LLC for exceptional groups. Our correspondence satisfies an expected property on cuspidal support, which is compatible with the generalized Springer correspondence, along with a list of characterizing properties including the stabilization of character sums, formal degree property etc. In particular, we obtain (not necessarily unipotent) "mixed" L-packets containing "F-singular" supercuspidals and non-supercuspidals. Such "mixed" L-packets had been elusive up until this point and very little was known prior to our work. I will give explicit examples of such mixed L-packets in terms of Deligne-Lusztig theory and Kazhdan-Lusztig parametrization. 

If time permits, I will explain how to pin down certain choices in the construction of the correspondence using stability of L-packets; one key input is a homogeneity result due to Waldspurger and DeBacker. Moreover, I will mention how to adapt our general strategy to construct explicit LLC for other reductive groups, such as GSp(4), Sp(4), etc. Such explicit description of the L-packets has been useful in number-theoretic applications, e.g. modularity lifting questions as in the recent work of Whitmore. 

Some parts of this talk are based on my joint work with Aubert, and some other parts are based on my joint work with Suzuki. 
 

Tue, 28 Nov 2023
13:00
L1

Global structures of SQFTs from rank-one Seiberg-Witten geometries

Cyril Closset
(Birmingham)
Abstract

 I will explore subtle aspects of rank-one 4d N=2 supersymmetric QFTs through their low-energy Coulomb-branch physics. This low-energy Lagrangian is famously encoded in the Seiberg-Witten (SW) curve, which is a one-parameter family of elliptic curves. Less widely appreciated is the fact that various properties of the QFTs, including properties that cannot be read off from the Lagrangian, are nonetheless encoded into the SW curve, in particular in its Mordell-Weil group. This includes the global form of the flavour group, the one-form symmetries under which defect lines are charged, and the "global form" of the theory. In particular, I will discuss in detail the difference between the pure SU(2) and the pure SO(3) N=2 SYM theories from this perspective. I will also comment on 5d SCFTs compactified on a circle in this context.

Tue, 28 Nov 2023
11:00
Lecture Room 4

Random surfaces and higher algebra

Darrick Lee
(Mathematical Institute)
Abstract

A representation on the space of paths is a map which is compatible with the concatenation operation of paths, such as the path signature and Cartan development (or equivalently, parallel transport), and has been used to define characteristic functions for the law of stochastic processes. In this talk, we consider representations of surfaces which are compatible with the two distinct algebraic operations on surfaces: horizontal and vertical concatenation. To build these representations, we use the notion of higher parallel transport, which was first introduced to develop higher gauge theories. We will not assume any background in geometry or category theory. Based on a preprint (https://arxiv.org/abs/2311.08366) with Harald Oberhauser.

 

Mon, 27 Nov 2023

16:30 - 17:30
L3

Schoen's conjecture for limits of isoperimetric surfaces

Thomas Körber
(University of Vienna)
Abstract

R. Schoen has conjectured that an asymptotically flat Riemannian n-manifold (M,g) with non-negative scalar curvature is isometric to Euclidean space if it admits a non-compact area-minimizing hypersurface. This has been confirmed by O. Chodosh and M. Eichmair in the case where n=3. In this talk, I will present recent work with M. Eichmair where we confirm this conjecture in the case where 3<n<8 and the area-minimizing hypersurface arises as the limit of large isoperimetric hypersurfaces. By contrast, we show that a large part of spatial Schwarzschild of dimension 3<n<8 is foliated by non-compact area-minimizing hypersurfaces.

Mon, 27 Nov 2023
16:00
C1

On two variations of Mazur's deformation functor

Simon Alonso
(ENS de Lyon)
Abstract

In 1989, Mazur defined the deformation functor associated to a residual Galois representation, which played an important role in the proof by Wiles of the modularity theorem. This was used as a basis over which many mathematicians constructed variations both to further specify it or to expand the contexts where it can be applied. These variations proved to be powerful tools to obtain many strong theorems, in particular of modular nature. In this talk I will give an overview of the deformation theory of Galois representations and describe two variants of Mazur's functor that allow one to properly deform reducible residual representations (which is one of the shortcomings of Mazur's original functor). Namely, I will present the theory of determinant-laws initiated by Bellaïche-Chenevier on the one hand, and an idea developed by Calegari-Emerton on the other.
If time permits, I will also describe results that seem to indicate a possible comparison between the two seemingly unrelated constructions.

Mon, 27 Nov 2023
15:30
L4

Costabilisation of telescopic spectral Lie algebras

Yuqing Shi
(Max Planck Institute for Mathematics)
Abstract

One can think of the stabilisation of an ∞-category as the ∞-category of objects that admit infinite deloopings. For example, the ∞-category of spectra is the stabilisation of the ∞-category of homotopy types. Costabilisation is the opposite notion of stabilisation, where we are interested in objects that allow infinite desuspensions. It is easy to see that the costabilisation of the ∞-category of homotopy types is trivial. Fix a prime number p. In this talk I will show that the costablisation of the ∞-category of T(h)-local spectral Lie algebras is equivalent to the ∞-category of T(h)-local spectra, where T(h) denotes a p-local telescope spectrum of height h. A key ingredient of the proof is to relate spectral Lie algebras to (spectral) Eₙ algebras via Koszul duality.
 

Mon, 27 Nov 2023
15:30
Lecture Theatre 3, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG

Strong regularization of differential equations with integrable drifts by fractional noise

Dr Khoa Lê
(University of Leeds)
Abstract

We consider stochastic differential equations (SDEs) driven by fractional Brownian motion with Hurst parameter less than 1/2. The drift is a measurable function of time and space which belongs to a certain Lebesgue space. Under subcritical regime, we show that a strong solution exists and is unique in path-by-path sense. When the noise is formally replaced by a Brownian motion, our results correspond to the strong uniqueness result of Krylov and Roeckner (2005). Our methods forgo standard approaches in Markovian settings and utilize Lyons' rough path theory in conjunction with recently developed tools. Joint work with Toyomu Matsuda and Oleg Butkovsky.

Mon, 27 Nov 2023
14:15
L4

L-infinity liftings of semiregularity maps and deformations

Emma Lepri
(University of Glasgow)
Abstract

After a brief introduction to the semiregularity maps of Severi, Kodaira and Spencer, and Bloch, I will focus on the Buchweitz-Flenner semiregularity map and on its importance for the deformation theory of coherent sheaves.
The subject of this talk is the construction of a lifting of each component of the Buchweitz-Flenner semiregularity map to an L-infinity morphism between DG-Lie algebras, which allows to interpret components of the semiregularity map as obstruction maps of morphisms of deformation functors.

As a consequence, we obtain that the semiregularity map annihilates all obstructions to deformations of a coherent sheaf on a complex projective manifold. Based on a joint work with R. Bandiera and M. Manetti.

Mon, 27 Nov 2023

14:00 - 15:00
Lecture Room 6

Towards Reliable Solutions of Inverse Problems with Deep Learning

Prof. Matthias Ehrhardt
(University of Bath)
Abstract

Deep learning has revolutionised many scientific fields and so it is no surprise that state-of-the-art solutions to several inverse problems also include this technology. However, for many inverse problems (e.g. in medical imaging) stability and reliability are particularly important.

Furthermore, unlike other image analysis tasks, usually only a fairly small amount of training data is available to train image reconstruction algorithms.

Thus, we require tailored solutions which maximise the potential of all ingredients: data, domain knowledge and mathematical analysis. In this talk we discuss a range of such hybrid approaches and will encounter along the way connections to various topics like generative models, convex optimization, differential equations and equivariance.

Fri, 24 Nov 2023
16:00
L1

Maths meets Stats

Dr Ximena Laura Fernandez (Mathematical Institute) and Dr Brett Kolesnik (Department of Statistics)
Abstract

Speaker: Ximena Laura Fernandez
Title: Let it Be(tti): Topological Fingerprints for Audio Identification

Abstract: Ever wondered how music recognition apps like Shazam work or why they sometimes fail? Can Algebraic Topology improve current audio identification algorithms? In this talk, I will discuss recent collaborative work with Spotify, where we extract low-dimensional homological features from audio signals for efficient song identification despite continuous obfuscations. Our approach significantly improves accuracy and reliability in matching audio content under topological distortions, including pitch and tempo shifts, compared to Shazam.

Talk based on the work: https://arxiv.org/pdf/2309.03516.pdf
 

Speaker: Brett Kolesnik
Title: Coxeter Tournaments

Abstract: We will present ongoing joint work with three Oxford PhD students: Matthew Buckland (Stats), Rivka Mitchell (Math/Stats) and Tomasz Przybyłowski (Math). We met last year as part of the course SC9 Probability on Graphs and Lattices. Connections with geometry (the permutahedron and generalizations), combinatorics (tournaments and signed graphs), statistics (paired comparisons and sampling) and probability (coupling and rapid mixing) will be discussed.

Fri, 24 Nov 2023

15:00 - 16:00
L5

Indecomposables in multiparameter persistence

Ulrich Bauer
(TU Munich)
Further Information

Ulrich Bauer is an associate professor (W3) in the department of mathematics at the Technical University of Munich (TUM), leading the Applied & Computational Topology group. His research revolves around application-motivated concepts and computational methods in topology and geometry, popularized by application areas such as topological data analysis. Some of his key research areas are persistent homology, discrete Morse theory, and geometric complexes.

Abstract

I will discuss various aspects of multi-parameter persistence related to representation theory and decompositions into indecomposable summands, based on joint work with Magnus Botnan, Steffen Oppermann, Johan Steen, Luis Scoccola, and Benedikt Fluhr.

A classification of indecomposables is infeasible; the category of two-parameter persistence modules has wild representation type. We show [1] that this is still the case if the structure maps in one parameter direction are epimorphisms, a property that is commonly satisfied by degree 0 persistent homology and related to filtered hierarchical clustering. Furthermore, we show [2] that indecomposable persistence modules are dense in the interleaving distance, and that being nearly-indecomposable is a generic property of persistence modules. On the other hand, the two-parameter persistence modules arising from interleaved sets (relative interleaved set cohomology) have a very well-behaved structure [3] that is encoded as a complete invariant in the extended persistence diagram. This perspective reveals some important but largely overlooked insights about persistent homology; in particular, it highlights a strong reason for working at the level of chain complexes, in a derived category [4].

 

[1] Ulrich Bauer, Magnus B. Botnan, Steffen Oppermann, and Johan Steen, Cotorsion torsion triples and the representation theory of filtered hierarchical clustering, Adv. Math. 369 (2020), 107171, 51. MR4091895

[2] Ulrich Bauer and Luis Scoccola, Generic multi-parameter persistence modules are nearly indecomposable, 2022.

[3] Ulrich Bauer, Magnus Bakke Botnan, and Benedikt Fluhr, Structure and interleavings of relative interlevel set cohomology, 2022.

[4] Ulrich Bauer and Benedikt Fluhr, Relative interlevel set cohomology categorifies extended persistence diagrams, 2022.

 

Fri, 24 Nov 2023

14:00 - 15:00
L3

Using virtual clinical trials to improve our understanding of diseases

Professor Adrianne Jenner
(Queensland University of Technology)
Abstract

Mathematical and computational techniques can improve our understanding of diseases. In this talk, I’ll present ways in which data from cancer patients can be combined with mathematical modelling and used to improve cancer treatments.

Given the variability in individual responses to cancer treatments, agent-based modelling has been a useful technique for accurately capturing cellular behaviours that may lead to stochasticity in patient outcomes. Using a hybrid agent-based model and partial differential equation system, we developed a model for brain cancer (glioblastoma) growth informed by ex-vivo patient samples. Extending the model to capture patient treatment with an oncolytic virus rQNestin, we used our model to propose reasons for treatment failure, which was later confirmed with further patient samples. More recently, we extended this model to investigate the effectiveness of combination treatments (chemotherapy, virotherapy and immunotherapy) informed by individual patient imaging mass cytometry.

This talk hopes to provide examples of ways mathematical and computational modelling can be used to run “virtual” clinical trials with the goal of obtaining more effective treatments for diseases.  

Fri, 24 Nov 2023

12:30 - 13:30

Smooth representations and n coherence of Iwasawa algebras in relations

Vincenzo Di Bartolo
(University of Cambridge)
Abstract

In the context of categorical Langlands, there are many ways in which one could define the notion of n-finitely presented smooth representation. We will explore and compare two different definitions, relating them with the notion of n-coherence for the corresponding Iwasawa ring.

Fri, 24 Nov 2023
12:00
L3

Thermodynamics of Near Extremal Black Holes in AdS(5)

Finn Larsen
(Michigan)
Abstract
The phase diagram of near extremal black holes is surprisingly rich.  In some regimes quantum effects are so strong that they dominate. On the supersymmetric locus there is a large ground state degeneracy protected by a gap. Throughout, there is an intricate classical interplay between charge and rotation. The talk reviews some of the physical mechanisms and highlights some unresolved tensions between claims in the literature. 
 
Thu, 23 Nov 2023
17:00
Lecture Theatre 1

A Mathematical Journey through Literature - Sarah Hart

Sarah Hart
(Birkbeck, University of London)
Further Information

In this lecture, Sarah will explore the many connections between mathematics and literature. She'll show the hidden mathematical structures behind everything from poetry to novels, and reveal some of the beautiful mathematical imagery and symbolism in fiction, from simple fairy tales to classics like Moby-Dick. Her goal is to show that not only are mathematics and literature inextricably linked, but that understanding these links can enhance our enjoyment of both. 

Sarah Hart is Professor of Mathematics at Birkbeck, University of London, the Gresham Professor of Geometry in Gresham College and author of Once Upon a Prime: the Wondrous Connections between Mathematics and Literature.

Please email @email to register to attend in person.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Thursday 14th December at 5pm and any time after (no need to register for the online version).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Thu, 23 Nov 2023

17:00 - 18:00

Imaginaries in products and in the ring of adeles

Jamshid Derakhshan
(Oxford)
Abstract

In this talk I will present joint work with Ehud Hrushovski on imaginaries in the ring of adeles and more generally in products and restricted products of structures (including the generalised products of Feferman-Vaught).

 

We prove a general theorem on weak elimination of imaginaries in products with respect to additional sorts which we deduce from an elimination of imaginaries for atomic and atomless Booleanizations of a theory. This combined with uniform elimination of imaginaries for p-adic numbers in a language with extra sorts as p-adic lattices proved first by Hrushovski-Martin-Rideau and more recently by Hils-Rideau-Kikuchi in a slightly different language, yields weak elimination of imaginaries for the ring of adeles in a language with extra sorts as adelic versions of the p-adic lattices. 

 

The proofs of the general results on products use Boolean valued model theory, stability theory, analysis of definable groups and liaison groups, and descriptive set theory of smooth Borel equivalence relations including Harrington-Kechris-Louveau and Glimm-Efros dichotomy. 

Thu, 23 Nov 2023
16:00
L5

Anticyclotomic p-adic L-functions for U(n) x U(n+1)  

Xenia Dimitrakopoulou
(University of Warwick)
Abstract

I will report on current work in progress on the construction of anticyclotomic p-adic L-functions for Rankin--Selberg products. I will explain how by p-adically interpolating the branching law for the spherical pair (U(n)xU(n+1), U(n)) we can construct a p-adic L-function attached to cohomological automorphic representations of U(n) x U(n+1), including anticyclotomic variation. Due to the recent proof of the unitary Gan--Gross--Prasad conjecture, this p-adic L-function interpolates the square root of the central L-value. Time allowing, I will explain how we can extend this result to the Coleman family of an automorphic representation.

Thu, 23 Nov 2023
16:00
Lecture Room 4, Mathematical Institute

Mean-field Analysis of Generalization Errors

Dr Gholamali Aminian
(Alan Turing Institute)
Abstract

We propose a novel framework for exploring weak and $L_2$ generalization errors of algorithms through the lens of differential calculus on the space of probability measures. Specifically, we consider the KL-regularized empirical risk minimization problem and establish generic conditions under which the generalization error convergence rate, when training on a sample of size $n$ , is $\matcal{O}(1/n)$. In the context of supervised learning with a one-hidden layer neural network in the mean-field regime, these conditions are reflected in suitable integrability and regularity assumptions on the loss and activation functions.

Thu, 23 Nov 2023
14:00
N3.12

Von Neumann Algebras and their Type Classification

Clément Virally
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 23 Nov 2023
14:00
Lecture Room 3

Making SGD parameter-free

Oliver Hinder
(University of Pittsburgh)
Abstract

We develop an algorithm for parameter-free stochastic convex optimization (SCO) whose rate of convergence is only a double-logarithmic factor larger than the optimal rate for the corresponding known-parameter setting. In contrast, the best previously known rates for parameter-free SCO are based on online parameter-free regret bounds, which contain unavoidable excess logarithmic terms compared to their known-parameter counterparts. Our algorithm is conceptually simple, has high-probability guarantees, and is also partially adaptive to unknown gradient norms, smoothness, and strong convexity. At the heart of our results is a novel parameter-free certificate for the step size of stochastic gradient descent (SGD), and a time-uniform concentration result that assumes no a-priori bounds on SGD iterates.

Additionally, we present theoretical and numerical results for a dynamic step size schedule for SGD based on a variant of this idea. On a broad range of vision and language transfer learning tasks our methods performance is close to that of SGD with tuned learning rate. Also, a per-layer variant of our algorithm approaches the performance of tuned ADAM.

This talk is based on papers with Yair Carmon and Maor Ivgi.

Thu, 23 Nov 2023

12:00 - 13:00
L3

Recent developments in fully nonlinear degenerate free boundary problems

Edgard Pimentel
(University of Coimbra)
Abstract

We consider degenerate fully nonlinear equations, whose degeneracy rate depends on the gradient of solutions. We work under a Dini-continuity condition on the degeneracy term and prove that solutions are continuously differentiable. Then we frame this class of equations in the context of a free transmission problem. Here, we discuss the existence of solutions and establish a result on interior regularity. We conclude the talk by discussing a boundary regularity estimate; of particular interest is the case of point-wise regularity at the intersection of the fixed and the free boundaries. This is based on joint work with David Stolnicki.

Thu, 23 Nov 2023

12:00 - 13:00
L1

Financial Health in Banking - combining automation and optimisation techniques in a multi-problem setup

Kal BUKOVSKI
(Sopra Steria)
Abstract

Predictive scoring modelling is a common approach to measure financial health and credit worthiness in banking. Whilst the latter is a key factor in making decisions for lending, evaluating financial health helps to identify vulnerable customers trending towards financial hardship, who need support. The current macroeconomic uncertainties amplify the importance of extensive flexibility in modelling data solutions so that they can remain effective and adaptive to a volatile economic environment. This workshop is focused on discussing relevant techniques and mathematical methodologies which can help modernise traditional scoring models and accelerate innovation. In summary, the problem definition in the banking context is how automation and optimality can be achieved in a multiobjective problem where a subset of existing data features should be selected by relevance and uniqueness, assigned scoring weights by importance and how a pool of customers can be categorised accordingly using their individual scores and auto-adjusting thresholds of risk classification scales. The key challenge is imposed by the mutual dependency of the three sub-problems and their objectives. Introducing or removing constraints in any of them can change the feasibility and optimality of the others and the overall solution. It is common for traditional scoring models to be mainly focused on the predictive accuracy and their setup is often defined and revised manually, following ad-hoc exploratory data analysis and business-led decision making. An automated optimisation of the data features’ selection, scoring weights and classification thresholds definition can achieve respectively: ▪ Precise financial health evaluation and book classification under changing economic climate; ▪ Development of innovative data-driven solutions to enhance prevention from financial hardship and bankruptcies.

Wed, 22 Nov 2023

17:15 - 18:30
Magrath Room, Queen's

Mathematising certainty in the 18th century. Jacob Bernoulli’s and Thomas Bayes’ redefinition of “absolute” and “moral” certainty through probability calculus

Dinh-Vinh Colomban
(Université Paris Nanterre)
Abstract

In the 17th century, certainty was still largely organized around heterogeneous categories such as “absolute certainty” and “moral certainty”. “Absolute certainty” was the highest kind of certainty rather than degree and it was limited to metaphysical and mathematical demonstrations. On the other hand, “moral certainty” was a high degree of assent which, even though it was subjective and always fallible, was regarded as sufficient for practical decisions based on empirical evidence. Although this duality between “moral” and “absolute” certainty remained in use well into the 18th century, its meaning shifted with the emergence of the calculus of probabilities. Probability calculus provided tools for attempts to mathematise “moral certainty” which would have been a contradiction in terms in their classical 17th-century sense.

Jacob Bernoulli's Ars Conjectandi (1713) followed by Thomas Bayes and Richard Price's An Essay towards solving a Problem in the Doctrine of Chances (1763) reshuffled what was before mutually exclusive characteristics of those categories of certainty. Moral certainty became mathematizable and measurable, while absolute certainty would sit in continuity in degree with moral certainty rather than be different in kind. The concept of certainty as a whole is thus redefined as a quantitative continuum.

This transformation lays the conceptual foundations for a new approach to knowledge. Knowledge and even scientific knowledge are no longer defined by a binary model of an absolute exclusion of uncertainty, but rather by the accuracy of measurement of the irreducible uncertainty in all empirical-based knowledge. Such measurement becomes possible thanks to the new tools provided by the emergence of probability calculus.

Wed, 22 Nov 2023

16:00 - 17:00
L6

3-manifold algorithms, representation theory, and the generalised Riemann hypothesis

Adele Jackson
(University of Oxford)
Abstract

You may be surprised to see the generalised Riemann hypothesis appear in algorithmic topology. For example, knottedness was originally shown to be in NP under the assumption of GRH.
Where does this condition come from? We will discuss this in the context of 3-sphere recognition, and examine why the approach fails for higher dimensions.

Tue, 21 Nov 2023

17:00 - 18:00
L1

THE 16th BROOKE BENJAMIN LECTURE: Advances in Advancing Interfaces: The Mathematics of Manufacturing of Industrial Foams, Fluidic Devices, and Automobile Painting

James Sethian
(UC Berkeley)
Abstract

Complex dynamics underlying industrial manufacturing depend in part on multiphase multiphysics, in which fluids and materials interact across orders of magnitude variations in time and space. In this talk, we will discuss the development and application of a host of numerical methods for these problems, including Level Set Methods, Voronoi Implicit Interface Methods, implicit adaptive representations, and multiphase discontinuous Galerkin Methods.  Applications for industrial problems will include modeling how foams evolve, how electro-fluid jetting devices work, and the physics and dynamics of rotary bell spray painting across the automotive industry.

Tue, 21 Nov 2023

17:00 - 18:00
L1

Advances in Advancing Interfaces: The Mathematics of Manufacturing of Industrial Foams, Fluidic Devices, and Automobile Painting

James Sethian
(University of California, Berkeley)
Abstract

Complex dynamics underlying industrial manufacturing depend in part on
multiphase multiphysics, in which fluids and materials interact across
orders of magnitude variations in time and space. In this talk, we will
discuss the development and application of a host of numerical methods for
these problems, including Level Set Methods, Voronoi Implicit Interface
Methods, implicit adaptive representations, and multiphase discontinuous
Galerkin Methods.  Applications for industrial problems will include modeling
how foams evolve, how electro-fluid jetting devices work, and
the physics and dynamics of rotary bell spray painting across the automotive
industry.

 

Tue, 21 Nov 2023

16:00 - 17:00
L6

Beyond i.i.d. weights: sparse and low-rank deep Neural Networks are also Gaussian Processes

Thiziri Nait Saada
(Mathematical Institute (University of Oxford))
Abstract

The infinitely wide neural network has been proven a useful and manageable mathematical model that enables the understanding of many phenomena appearing in deep learning. One example is the convergence of random deep networks to Gaussian processes that enables a rigorous analysis of the way the choice of activation function and network weights impacts the training dynamics. In this paper, we extend the seminal proof of Matthews (2018) to a larger class of initial weight distributions (which we call "pseudo i.i.d."), including the established cases of i.i.d. and orthogonal weights, as well as the emerging low-rank and structured sparse settings celebrated for their computational speed-up benefits. We show that fully-connected and convolutional networks initialized with pseudo i.i.d. distributions are all effectively equivalent up to their variance. Using our results, one can identify the Edge-of-Chaos for a broader class of neural networks and tune them at criticality in order to enhance their training.

Tue, 21 Nov 2023

16:00 - 17:00
C2

On stability of metric spaces and Kalton's property Q

Andras Zsak
(University of Cambridge)
Abstract

There has been considerable interest in the problem of whether every metric space of bounded geometry coarsely embeds into a uniformly convex Banach space due to the work of Kasparov and Yu that established a connection between such embeddings and the Novikov conjecture. Brown and Guentner were able to prove that a metric space with bounded geometry coarsely embeds into a reflexive Banach space. Kalton significantly extended this result to stable metric spaces and asked whether these classes are coarsely equivalent, i.e. whether every reflexive Banach space coarsely embeds into a stable metric space. Baudier introduced the notion of upper stability, a relaxation of stability, for metric spaces as a new invariant to distinguish reflexive spaces from stable metric spaces. In this talk, we show that in fact, every reflexive space is upper stable and also establish a connection of upper stability to the asymptotic structure of Banach spaces. This is joint work with F. Baudier and Th. Schlumprecht.

Tue, 21 Nov 2023
15:00
L1

Residual finiteness and actions on trees

Gareth Wilkes
Abstract

One of the more common ways to study a residually finite group (or its profinite completion) is via breaking it down into a graph of groups in some way. The descriptions of this theory generally found in the literature are highly algebraic and difficult to digest. I will present alternative, more geometric, definitions and perspectives on these theories based on properties of virtually free groups and their profinite completions.

Tue, 21 Nov 2023

14:00 - 15:00
L3

Embedding planar graphs on point-sets: Problems and new results

Raphael Steiner
(ETH Zurich)
Abstract

In this talk, I will present new results addressing two rather well-known problems on the embeddability of planar graphs on point-sets in the plane. The first problem, often attributed to Mohar, asks for the asymptotics of the minimum size of so-called universal point sets, i.e. point sets that simultaneously allow straight-line embeddings of all planar graphs on $n$ vertices. In the first half of the talk I will present a family of point sets of size $O(n)$ that allow straight-line embeddings of a large family of $n$-vertex planar graphs, including all bipartite planar graphs. In the second half of the talk, I will present a family of $(3+o(1))\log_2(n)$ planar graphs on $n$ vertices that cannot be simultaneously embedded straight-line on a common set of $n$ points in the plane. This significantly strengthens the previously best known exponential bound.

Tue, 21 Nov 2023

14:00 - 15:00
L5

Proximal Galekin: A Structure-Preserving Finite Element Method For Pointwise Bound Constraints

Brendan Keith
(Brown University)
Abstract

The proximal Galerkin finite element method is a high-order, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinitedimensional function spaces. In this talk, we will introduce the proximal Galerkin method and apply it to solve free-boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The proximal Galerkin framework is a natural consequence of the latent variable proximal point (LVPP) method, which is an stable and robust alternative to the interior point method that will also be introduced in this talk.

In particular, LVPP is a low-iteration complexity, infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout the talk, we will arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and an infinite-dimensional Lie group; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization.

The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis. This talk is based on [1].

 

Keywords: pointwise bound constraints, bound-preserving discretization, entropy regularization, proximal point

 

Mathematics Subject Classifications (2010): 49M37, 65K15, 65N30

 

References  [1] B. Keith, T.M. Surowiec. Proximal Galerkin: A structure-preserving finite element method for pointwise bound constraints arXiv preprint arXiv:2307.12444 2023.

Brown University Email address: @email

Simula Research Laboratory Email address: @email

Tue, 21 Nov 2023
13:00
L1

KLT for windings strings and nonrelativistic string theory

Matthew Yu
(Oxford )
Abstract

I will discuss a KLT relation of closed string amplitudes into open string amplitudes for closed string states carrying winding and momentum in toroidal compactifications. The goal is to introduce an interesting D-brane set up in the target space in order to accommodate both quantum numbers of the closed string. I will then discuss KLT factorization of amplitudes for winding closed strings in the presence of a critical Kalb-Ramond field and the relevance of this work for nonrelativistic string theory when taking the zero Regge limit. 

Tue, 21 Nov 2023
11:00
L1

Singularity Detection from a Data "Manifold"

Uzu Lim
(Mathematical Institute)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

High-dimensional data is often assumed to be distributed near a smooth manifold. But should we really believe that? In this talk I will introduce HADES, an algorithm that quickly detects singularities where the data distribution fails to be a manifold.

By using hypothesis testing, rather than persistent homology, HADES achieves great speed and a strong statistical foundation. We also have a precise mathematical theorem for correctness, proven using optimal transport theory and differential geometry. In computational experiments, HADES recovers singularities in synthetic data, road networks, molecular conformation space, and images.

Paper link: https://arxiv.org/abs/2311.04171
Github link: https://github.com/uzulim/hades
 

Tue, 21 Nov 2023
11:00
Lecture Room 4

Periodic space-time homogenization of the ϕ 4/2 -equation

Harprit Singh
(Imperial College, London)
Abstract

We consider the homogenisation problem for the ϕ4/2 equation on the torus T2 , i.e. the behaviour as ϵ → 0 of the solutions to the equations suggestively written

tuϵ − ∇ · A(x/ϵ, t/ϵ2 )∇uϵ = −u3ϵ + ξ

where ξ denotes space-time white noise and A : T 2 × R is uniformly elliptic, periodic and H¨older continuous. Based on joint work with M. Hairer

Mon, 20 Nov 2023
16:30
L3

Recent developments on evolution PDEs on graphs

Antonio Esposito
(Mathematical Institute (University of Oxford))
Abstract

The seminar concerns the study of evolution equations on graphs, motivated by applications in data science and opinion dynamics. We will discuss graph analogues of the continuum nonlocal-interaction equation and interpret them as gradient flows with respect to a graph Wasserstein distance, using Benamou--Brenier formulation. The underlying geometry of the problem leads to a Finslerian gradient flow structure, rather than Riemannian, since the resulting distance on graphs is actually a quasi-metric. We will address the existence of suitably defined solutions, as well as their asymptotic behaviour when the number of vertices converges to infinity and the graph structure localises. The two limits lead to different dynamics. From a slightly different perspective, by means of a classical fixed-point argument, we can show the existence and uniqueness of solutions to a larger class of nonlocal continuity equations on graphs. In this context, we consider general interpolation functions of the mass on the edges, which give rise to a variety of different dynamics. Our analysis reveals structural differences with the more standard Euclidean space, as some analogous properties rely on the interpolation chosen. The latter study can be extended to equations on co-evolving graphs. The talk is based on works in collaboration with G. Heinze (Augsburg), L. Mikolas (Oxford), F. S. Patacchini (IFP Energies Nouvelles), A. Schlichting (University of Münster), and D. Slepcev (Carnegie Mellon University). 

Mon, 20 Nov 2023
16:00
L1

Post-Quantum Cryptography (and why I’m in the NT corridor)

Patrick Hough
(University of Oxford)
Abstract

In this talk I will give a brief introduction to the field of post-quantum (PQ) cryptography, introducing a few of the most popular computational hardness assumptions. Second, I will give an overview of a recent work of mine on PQ electronic voting. I’ll finish by presenting a short selection of ‘exotic’ cryptographic constructions that I think are particularly hot at the moment (no, not blockchain). The talk will be definitionally light since I expect the area will be quite new to many and I hope this will make for a more engaging introduction.