Thu, 23 Jul 2020

16:00 - 17:00
Virtual

Artificial Neural Networks and Kernel Methods

Franck Gabriel
(Ecole Polytechnique Federale de Lausanne)
Abstract

The random initialisation of Artificial Neural Networks (ANN) allows one to describe, in the functional space, the limit of the evolution of ANN when their width tends towards infinity. Within this limit, an ANN is initially a Gaussian process and follows, during learning, a gradient descent convoluted by a kernel called the Neural Tangent Kernel.

Connecting neural networks to the well-established theory of kernel methods allows us to understand the dynamics of neural networks, their generalization capability. In practice, it helps to select appropriate architectural features of the network to be trained. In addition, it provides new tools to address the finite size setting.

Tue, 21 Jul 2020
12:00

Conformal Geometry of Null Infinity, including gravitational waves

Yannick Herfray
(ULB Brussells)
Abstract

Since the seminal work of Penrose, it has been understood that conformal compactifications (or "asymptotic simplicity") is the geometrical framework underlying Bondi-Sachs' description of asymptotically flat space-times as an asymptotic expansion. From this point of view the asymptotic boundary, a.k.a "null-infinity", naturally is a conformal null (i.e degenerate) manifold. In particular, "Weyl rescaling" of null-infinity should be understood as gauge transformations. As far as gravitational waves are concerned, it has been well advertised by Ashtekar that if one works with a fixed representative for the conformal metric, gravitational radiations can be neatly parametrized as a choice of "equivalence class of metric-compatible connections". This nice intrinsic description however amounts to working in a fixed gauge and, what is more, the presence of equivalence class tend to make this point of view tedious to work with.

I will review these well-known facts and show how modern methods in conformal geometry (namely tractor calculus) can be adapted to the degenerate conformal geometry of null-infinity to encode the presence of gravitational waves in a completely geometrical (gauge invariant) way: Ashtekar's (equivalence class of) connections are proved to be in 1-1 correspondence with choices of (genuine) tractor connection, gravitational radiation is invariantly described by the tractor curvature and the degeneracy of gravity vacua correspond to the degeneracy of flat tractor connections. The whole construction is fully geometrical and manifestly conformally invariant.

Tue, 14 Jul 2020

15:30 - 16:30

Adiabatic invariants for the FPUT and Toda chains in the thermodynamic limit

Tamara Grava
(University of Bristol)
Abstract
We consider the Fermi-Pasta-Ulam-Tsingou (FPUT) chain composed by N particles  on the line  and endowed the phase space with the Gibbs measure at temperature 1/beta. We prove that the   integrals of motion of the Toda chain  are adiabatic invariants for the FPTU chain for times of order beta. Further we prove that certain combination of the harmonic energies are adiabatic invariants  of the FPUT chain  on the same time scale, while they are adiabatic invariants for Toda chain for all times. Joint work with A. Maspero, G. Mazzuca and A. Ponno.
Thu, 09 Jul 2020

16:00 - 17:00
Virtual

Characterising the set of (untruncated) signatures

Horatio Boedihardjo
(University of Reading)
Abstract

The concept of path signatures has been widely used in several areas of pure mathematics including in applications to data science. However, we remain unable to answer even the most basic questions about it. For instance, how to fully characterise the set of (untruncated) signatures of bounded variation paths? Can certain norms on signatures be related to the length of a path, like in Fourier isometry? In this talk, we will review some known results, explain the open problems and discuss their difficulties.

Thu, 02 Jul 2020

16:00 - 17:30
Virtual

John Roe and Course Geometry

Nigel Higson
(Penn State University)
Further Information

Part of UK virtual operator algebra seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

Abstract: John Roe was a much admired figure in topology and noncommutative geometry, and the creator of the C*-algebraic approach to coarse geometry. John died in 2018 at the age of 58. My aim in the first part of the lecture will be to explain in very general terms the major themes in John’s work, and illustrate them by presenting one of his best-known results, the partitioned manifold index theorem. After the break I shall describe a later result, about relative eta invariants, that has inspired an area of research that is still very active.


Assumed Knowledge: First part: basic familiarity with C*-algebras, plus a little topology. Second part: basic familiarity with K-theory for C*-algebras.

Tue, 30 Jun 2020

15:30 - 16:30

Application of Stein's method to linear statistics of beta-ensembles

Gaultier Lambert
(University of Zurich)
Abstract

In the first part of the talk, I will review the basic ideas behind Stein’s method for normal approximation and present a general result which we obtained in arXiv:1706.10251 (joint work with Michel Ledoux and Christian Webb). This result states that for a Gibbs measure, an eigenfunction of the corresponding infinitesimal generator is approximately Gaussian in a sense which will be made precise. In the second part, I will report on several applications in random matrix theory. This includes a proof of Johansson’s central limit theorem for linear statistics of beta-ensembles on \R, as well as an application to circular beta-ensembles in the high temperature regime (based on arXiv:1909.01142, joint work with Adrien Hardy).

Thu, 25 Jun 2020

17:00 - 18:00

A Penrose integral formula for hyperkahler metrics.

Atul Sharma
Abstract

It is a well-known fact that conformal structures on Riemann surfaces are in 1:1 correspondence with complex structures, but have you ever wondered whether this is just a fluke in 2 dimensions? In this talk, I will explain the concept of Penrose's "non-linear graviton", a fancy name for the twistor space of a hyperkahler manifold and one of the major historical achievements of Oxford maths. The twistor correspondence associates points of the hyperkahler manifold with certain holomorphic rational curves embedded in twistor space. We will see how information of the hyperkahler metric can be encoded purely in the complex structure on twistor space, giving a partial but welcome generalization of the 2-dimensional "fluke". Then I will outline a recently found Dolbeault-framework for the metric's reconstruction from local representatives of this complex structure. This provides an explicit integral formula for Kahler forms and consequently for the hyperkahler metric in terms of holomorphic data on twistor space. Finally, time permitting, I will discuss some interesting applications to (some or all of) PDEs, hyperkahler quotients, and the physics of "quantum gravity".
 

Thu, 25 Jun 2020

16:00 - 18:00
Virtual

Optimal execution with rough path signatures

Imanol Pérez Arribas
(Mathematical Institute University of Oxford)
Abstract

We present a method for obtaining approximate solutions to the problem of optimal execution, based on a signature method. The framework is general, only requiring that the price process is a geometric rough path and the price impact function is a continuous function of the trading speed. Following an approximation of the optimisation problem, we are able to calculate an optimal solution for the trading speed in the space of linear functions on a truncation of the signature of the price process. We provide strong numerical evidence illustrating the accuracy and flexibility of the approach. Our numerical investigation both examines cases where exact solutions are known, demonstrating that the method accurately approximates these solutions, and models where exact solutions are not known. In the latter case, we obtain favourable comparisons with standard execution strategies.

Tue, 23 Jun 2020
12:00

Cluster patterns in Landau and Leading Singularities via the Amplituhedron

Matteo Parisi
(Oxford)
Abstract

In this talk I will present some recent explorations of cluster-algebraic patterns in the building blocks of scattering amplitudes in N = 4 super Yang-Mills theory. In particular, I will first briefly introduce the main characters on stage, i.e. Leading Singularities, Landau singularities, the amplituhedron and cluster algebras. I will then present my main conjecture, "LL-adjacency", which makes all the above characters play together: given a maximal cut of a loop amplitude, Landau singularities and poles of each Yangian invariant appearing in any representation of the corresponding Leading Singularities can be found together in a cluster.  I will explain how the conjecture has been tested for all one-loop amplitudes up to 9 points using cluster algebraic and amplituhedron-based methods.  Finally, I will discuss implications for computing loop amplitudes and their singularity structure, and open research directions.

This is based on the joint work with Ömer Gürdoğan (arXiv: 2005.07154).

Mon, 22 Jun 2020

16:00 - 17:00

Controlled and constrained martingale problems

Thomas Kurtz
(University of Wisconsin)
Abstract

Most of the basic results on martingale problems extend to the setting in which the generator depends on a control.  The “control” could represent a random environment, or the generator could specify a classical stochastic control problem.  The equivalence between the martingale problem and forward equation (obtained by taking expectations of the martingales) provides the tools for extending linear programming methods introduced by Manne in the context of controlled finite Markov chains to general Markov stochastic control problems.  The controlled martingale problem can also be applied to the study of constrained Markov processes (e.g., reflecting diffusions), the boundary process being treated as a control.  The talk includes joint work with Richard Stockbridge and with Cristina Costantini. 

Mon, 22 Jun 2020
15:45
Virtual

Weil-Petersson geodesics and geometry of 3-manifolds

Yair Minsky
(Yale University)
Abstract

There is a well-known correspondence between Weil-Petersson geodesic loops in the moduli space of a surface S and hyperbolic 3-manifolds fibering over the circle with fibre S. Much is unknown, however, about the detailed relationship between geometric features of the loops and those of the 3-manifolds.

In work with Leininger-Souto-Taylor we study the relation between WP length and 3-manifold volume, when the length (suitably normalized) is bounded and the fiber topology is unbounded. We obtain a WP analogue of a theorem proved by Farb-Leininger-Margalit for the Teichmuller metric. In work with Modami, we fix the fiber topology and study connections between the thick-thin decomposition of a geodesic loop and that of the corresponding 3-manifold. While these decompositions are often in direct correspondence, we exhibit examples where the correspondence breaks down. This leaves the full conjectural picture somewhat mysterious, and raises many questions. 

Mon, 22 Jun 2020
14:15
Virtual

Geometry of genus 4 curves in P^3 and wall-crossing

Fatemeh Rezaee
(Edinburgh)
Abstract

In this talk, I will explain a new wall-crossing phenomenon on P^3 that induces non-Q-factorial singularities and thus cannot be understood as an operation in the MMP of the moduli space, unlike the case for many surfaces.  If time permits, I will explain how the wall-crossing could help to understand the geometry of the associated Hilbert scheme and PT moduli space.

Fri, 19 Jun 2020

15:00 - 16:00
Virtual

Of monks, lawyers and airports: a unified framework for equivalences in social networks

Nina Otter
(UCLA)
Abstract

One of the main concerns in social network science is the study of positions and roles. By "position" social scientists usually mean a collection of actors who have similar ties to other actors, while a "role" is a specific pattern of ties among actors or positions. Since the 1970s a lot of research has been done to develop these concepts in a rigorous way. An open question in the field is whether it is possible to perform role and positional analysis simultaneously. In joint work in progress with Mason Porter we explore this question by proposing a framework that relies on the principle of functoriality in category theory. In this talk I will introduce role and positional analysis, present some well-studied examples from social network science, and what new insights this framework might give us.

Fri, 19 Jun 2020

14:00 - 15:00
Virtual

Multi-scale modelling to predict strain in the femoral neck during level walking

Dr Xinshan (Shannon) Li
(Department of Mechanical Engineering University of Sheffield)
Abstract

Femoral neck response to physiological loading during level walking can be better understood, if personalized muscle and bone anatomy is considered. Finite element (FE) models of in vivo cadaveric bones combined with gait data from body-matched volunteers were used in the earlier studies, which could introduce errors in the results. The aim of the current study is to report the first fully personalized multiscale model to investigate the strains predicted at the femoral neck during a full gait cycle. CT-based Finite element models (CT/FE) of the right femur were developed following a validated framework. Muscle forces estimated by the musculoskeletal model were applied to the CT/FE model. For most of the cases, two overall peaks were predicted around 15% and 50% of the gait. Maximum strains were predicted at the superior neck region in the model. Anatomical muscle variations seem to affect femur response leading to considerable variations among individuals, both in term of the strains level and the trend at the femoral neck.
 

Fri, 19 Jun 2020

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

Rahil Sachak-Patwa, Thomas Babb, Huining Yang, Joel Dyer
(Mathematical Institute)
Further Information

The Group Meeting will be held virtually unless the Covid 19 lockdown is over in which case the location will be L2.

Thu, 18 Jun 2020

16:45 - 17:30
Virtual

The algebraic structure of C*-algebras associated to groups

Matthew Kennedy
(University of Waterloo)
Further Information

Part of UK virtual operator algebra seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

Since the work of von Neumann, the theory of operator algebras has been closely linked to the theory of groups. On the one hand, operator algebras constructed from groups provide an important source of examples and insight. On the other hand, many problems about groups are most naturally studied within an operator-algebraic framework. In this talk I will give an overview of some problems relating the structure of a group to the structure of a corresponding C*-algebra. I will discuss recent results and some possible future directions.

Thu, 18 Jun 2020

16:00 - 17:00

Deep Neural Networks for Optimal Execution

LAURA LEAL
(Princeton)
Abstract


Abstract: We use a deep neural network to generate controllers for optimal trading on high frequency data. For the first time, a neural network learns the mapping between the preferences of the trader, i.e. risk aversion parameters, and the optimal controls. An important challenge in learning this mapping is that in intraday trading, trader's actions influence price dynamics in closed loop via the market impact. The exploration--exploitation tradeoff generated by the efficient execution is addressed by tuning the trader's preferences to ensure long enough trajectories are produced during the learning phase. The issue of scarcity of financial data is solved by transfer learning: the neural network is first trained on trajectories generated thanks to a Monte-Carlo scheme, leading to a good initialization before training on historical trajectories. Moreover, to answer to genuine requests of financial regulators on the explainability of machine learning generated controls, we project the obtained ``blackbox controls'' on the space usually spanned by the closed-form solution of the stylized optimal trading problem, leading to a transparent structure. For more realistic loss functions that have no closed-form solution, we show that the average distance between the generated controls and their explainable version remains small. This opens the door to the acceptance of ML-generated controls by financial regulators.
 

Thu, 18 Jun 2020

16:00 - 16:45
Virtual

Non-local games: operator algebraic approaches

Ivan Todorov
(Queen's University Belfast)
Further Information

Part of UK virtual operator algebra seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The study of non-local games has involved fruitful interactions between operator algebra theory and quantum physics, with a starting point the link between the Connes Embedding Problem and the Tsirelson Problem, uncovered by Junge et al (2011) and Ozawa (2013). Particular instances of non-local games, such as binary constraint system games and synchronous games, have played an important role in the pursuit of the resolution of these problems. In this talk, I will summarise part of the operator algebraic toolkit that has proved useful in the study of non-local games and of their perfect strategies, highlighting the role C*-algebras and operator systems play in their mathematical understanding.

Thu, 18 Jun 2020

16:00 - 16:45
Virtual

OCIAM learns ... about wrinkling.

Professor Dominic Vella
(Mathematical Institute)
Further Information

This term's IAM seminar, a bi-weekly series entitled, 'OCIAM learns about ...' will involve internal speakers giving a general introduction to a topic on which they are experts.

Join the seminar in Zoom

https://zoom.us/j/91733296449?pwd=c29vMDluR0RCRHJia2JEcW1LUVZjUT09 
 Meeting ID: 917 3329 6449Password: 329856One 

Abstract


This week Professor Dominic Vella will talk about wrinkling  

In this talk I will provide an overview of recent work on the wrinkling of thin elastic objects. In particular, the focus of the talk will be on answering questions that arise in recent applications that seek not to avoid, but rather, exploit wrinkling. Such applications usually take place far beyond the threshold of instability and so key themes will be the limitations of “standard” instability analysis, as well as what analysis should be performed instead. I will discuss the essential ingredients of this ‘Far-from-Threshold’ analysis, as well as outlining some open questions.  

Thu, 18 Jun 2020
12:00
Virtual

A variational approach to fluid-structure interactions

Sebastian Schwarzacher
(Charles University in Prague)
Abstract

I introduce a recently developed variational approach for hyperbolic PDE's. The method allows to show the existence of weak solutions to fluid-structure interactions where a visco-elastic bulk solid is interacting with an incompressible fluid governed by the unsteady Navier Stokes equations. This is a joint work with M. Kampschulte and B. Benesova.

Wed, 17 Jun 2020

16:00 - 17:30
Virtual

Forcing axioms via names

Philipp Schlicht
(Bristol University)
Abstract

Forcing axioms state that the universe inherits certain properties of generic extensions for a given class of forcings. They are usually formulated via the existence of filters, but several alternative characterisations are known. For instance, Bagaria (2000) characterised some forcing axioms via generic absoluteness for objects of size $\omega_1$. In a related new approach, we consider principles stating the existence of filters that induce correct evaluations of sufficiently simple names in prescribed ways. For example, for the properties ‘nonempty’ or ‘unbounded in $\omega_1$’, consider the principle: whenever this property is forced for a given sufficiently simple name, then there exists a filter inducing an evaluation with the same property. This class of principles turns out to be surprisingly general: we will see how to characterise most known forcing axioms, but also some combinatorial principles that are not known to be equivalent to forcing axioms. This is recent joint work in progress with Christopher Turner.

Wed, 17 Jun 2020
10:00
Virtual

TBA

Jonathan Fruchter
(University of Oxford)
Tue, 16 Jun 2020

15:30 - 16:30

Statistical behavior of the Riemann zeta function and multiplicative chaos

Christian Webb
(Aalto University)
Abstract

I will discuss joint work with Eero Saksman (Helsinki) describing the statistical behavior of the Riemann zeta function on the critical line in terms of complex Gaussian multiplicative chaos. Time permitting, I will also discuss connections to random matrix theory as well as some recent joint work with Saksman and Adam Harper (Warwick) relating powers of the absolute value of the zeta function to real multiplicative chaos.

Tue, 16 Jun 2020

12:00 - 13:00
C1

TBA

Michal Gnacik
(University of Portsmouth)
Tue, 16 Jun 2020

11:30 - 12:45
L6

(Postponed)

Angus Macintyre
(Queen Mary University of London)
Abstract

TBA

Mon, 15 Jun 2020

16:00 - 17:00

Local stochastic volatility and the inverse of the Markovian projection

Mykhaylo Shkolnikov
(Princeton University)
Abstract

 

Abstract: The calibration problem for local stochastic volatility models leads to two-dimensional stochastic differential equations of McKean-Vlasov type. In these equations, the conditional distribution of the second component of the solution given the first enters the equation for the first component of the solution. While such equations enjoy frequent application in the financial industry, their mathematical analysis poses a major challenge. I will explain how to prove the strong existence of stationary solutions for these equations, as well as the strong uniqueness in an important special case. Based on joint work with Daniel Lacker and Jiacheng Zhang.  
 

Mon, 15 Jun 2020

15:45 - 16:45
Virtual

Smooth Open-Closed Field Theories from Gerbes and D-Branes

Severin Bunk
(University of Hamburg)
Abstract

In this talk I will present results from an ongoing joint research  program with Konrad Waldorf. Its main goal is to understand the  relation between gerbes on a manifold M and open-closed smooth field  theories on M. Gerbes can be viewed as categorified line bundles, and  we will see how gerbes with connections on M and their sections give  rise to smooth open-closed field theories on M. If time permits, we  will see that the field theories arising in this way have several characteristic properties, such as invariance under thin homotopies,  and that they carry positive reflection structures. From a physical  perspective, ourconstruction formalises the WZW amplitude as part of  a smooth bordism-type field theory.

Mon, 15 Jun 2020
14:15
Virtual

Geometry from Donaldson-Thomas invariants

Tom Bridgeland
(Sheffield)
Abstract

I will describe an ongoing research project which aims to encode the DT invariants of a CY3 triangulated category in a geometric structure on its space of stability conditions. More specifically we expect to find a complex hyperkahler structure on the total space of the tangent bundle. These ideas are closely related to the work of Gaiotto, Moore and Neitzke from a decade ago. The main analytic input is a class of Riemann-Hilbert problems involving maps from the complex plane to an algebraic torus with prescribed discontinuities along a collection of rays.

Mon, 15 Jun 2020
12:45
Virtual

SQCD and pairs of pants --- ZOOM SEMINAR

Shlomo Razamat
(Technion)
Abstract

We will show that minimally supersymmetric SU(N+2) SQCD models in the middle of the conformal window can be engineered by compactifying certain 6d SCFTs on three punctured spheres. The geometric construction of the 4d theories predicts numerous interesting strong coupling effects, such as IR symmetry enhancements and duality. We will discuss this interplay between simple geometric and group theoretic considerations and complicated field theoretic strong coupling phenomena. For example, one of the dualities arising geometrically from different pair-of-pants decompositions of a four punctured sphere  is an $SU(N+2)$ generalization of the Intriligator-Pouliot duality of $SU(2)$ SQCD with $N_f=4$, which is a degenerate, $N=0$, instance of our discussion. 

Fri, 12 Jun 2020

16:00 - 17:00
Virtual

North Meets South

Paolo Aceto
Abstract

Paolo Aceto

Knot concordance and homology cobordisms of 3-manifolds 

We introduce the notion of knot concordance for knots in the 3-sphere and discuss some key problems regarding the smooth concordance group. After defining homology cobordisms of 3-manifolds we introduce the integral and rational homology cobordism groups and briefly discuss their relationship with the concordance group. We conclude stating a few recent results and open questions on the structure of these groups.

Fri, 12 Jun 2020

15:00 - 16:00
Virtual

Contagion Maps for Manifold Learning

Barbara Mahler
(University of Oxford)
Abstract

Contagion maps are a family of maps that map nodes of a network to points in a high-dimensional space, based on the activations times in a threshold contagion on the network. A point cloud that is the image of such a map reflects both the structure underlying the network and the spreading behaviour of the contagion on it. Intuitively, such a point cloud exhibits features of the network's underlying structure if the contagion spreads along that structure, an observation which suggests contagion maps as a viable manifold-learning technique. We test contagion maps as a manifold-learning tool on several different data sets, and compare its performance to that of Isomap, one of the most well-known manifold-learning algorithms. We find that, under certain conditions, contagion maps are able to reliably detect underlying manifold structure in noisy data, when Isomap is prone to noise-induced error. This consolidates contagion maps as a technique for manifold learning. 

Fri, 12 Jun 2020

14:00 - 15:00
Virtual

Live-modelling the temporal regulation of mesoderm specification

Dr Berta Verd
(University of Cambridge)
Abstract

Pattern formation emerges during development from the interplay between gene regulatory networks (GRNs) acting at the single cell level and cell movements driving tissue level morphogenetic changes. As a result, the timing of cell specification and the dynamics of morphogenesis must be tightly cross-regulated. In the developing zebrafish, mesoderm progenitors will spend varying amounts of time (from 5 to 10hrs) in the tailbud before entering the pre-somitic mesoderm (PSM) and initiating a stereotypical transcriptional trajectory towards a mesodermal fate. In contrast, when dissociated and placed in vitro, these progenitors differentiate synchronously in around 5 hours. We have used a data-driven mathematical modelling approach to reverse-engineer a GRN that is able to tune the timing of mesodermal differentiation as progenitors leave the tailbud’s signalling environment, which also explains our in vitro observations. This GRN recapitulates pattern formation at the tissue level when modelled on cell tracks obtained from live-imaging a developing PSM. Our “live-modelling” framework also allows us to simulate how perturbations to the GRN affect the emergence of pattern in zebrafish mutants. We are now extending this analysis to cichlid fishes in order to explore the regulation of developmental time in evolution.

 

Thu, 11 Jun 2020

17:00 - 18:00

Motives, periods and Feynman integrals

Matija Tapušković
Abstract

Following Grothendieck, periods can be interpreted as numbers arising as coefficients of a comparison isomorphism between two cohomology theories. Due to the influence of the “yoga of motives” these numbers are omnipresent in arithmetic algebraic geometry. The first part of the talk will be a crash course on how to study periods, as well as the action of the motivic Galois group on them, via an elementary category of realizations. In the second part, we will see how one uses this framework to study Feynman integrals -- an interesting family of periods arising in quantum field theory. We will finish with a brief overview of some of the recent work in algebraic geometry inspired by the study of periods arising in physics.

Thu, 11 Jun 2020

14:00 - 15:00

Dense networks that do not synchronize and sparse ones that do.

Alex Townsend
(Cornell)
Abstract

Consider a network of identical phase oscillators with sinusoidal coupling. How likely are the oscillators to globally synchronize, starting from random initial phases? One expects that dense networks have a strong tendency to synchronize and the basin of attraction for the synchronous state to be the whole phase space. But, how dense is dense enough? In this (hopefully) entertaining Zoom talk, we use techniques from numerical linear algebra and computational Algebraic geometry to derive the densest known networks that do not synchronize and the sparsest networks that do. This is joint work with Steven Strogatz and Mike Stillman.


[To be added to our seminars mailing list, or to receive a Zoom invitation for a particular seminar, please contact @email.]

Thu, 11 Jun 2020
12:00
Virtual

On dynamic slip boundary condition

Erika Maringova
(Vienna University of Technology)
Abstract

In the talk, we study the Navier–Stokes-like problems for the flows of homogeneous incompressible fluids. We introduce a new type of boundary condition for the shear stress tensor, which includes an auxiliary stress function and the time derivative of the velocity. The auxiliary stress function serves to relate the normal stress to the slip velocity via rather general maximal monotone graph. In such way, we are able to capture the dynamic response of the fluid on the boundary. Also, the constitutive relation inside the domain is formulated implicitly. The main result is the existence analysis for these problems.

Thu, 11 Jun 2020
11:30
Virtual

Covers of modular curves, categoricity and Drinfeld's GT

Boris Zilber
(Oxford)
Abstract

This is a joint work with C.Daw in progress. We study the L_{omega_1,omega}-theory of the modular functions j_n: H -> Y(n). In other words, H is seen here as the universal cover in the class of modular curves. The setting is different from one considered before by Adam Harris and Chris Daw: GL(2,Q) is given here as the sort without naming its individual elements. As usual in the study of 'pseudo-analytic cover structures', the statement of categoricity is equivalent to certain arithmetic conditions, the most challenging of which is to determine the Galois action on CM-points. This turns out to be equivalent to determining the Galois action on SL(2,\hat{Z})/(-1), that is a subgroup of

Out SL(2,\hat{Z})/(-1)   induced by the action of  Gal_Q. We find by direct matrix calculations a subgroup Out_* of the outer automorphisms group which contains the image of Gal_Q. Moreover, we prove that Out_* is the image of Drinfeld's group GT (Grothendieck-Teichmuller group) under a natural homomorphism.

It is a reasonable to conjecture that Out_* is equal to the image of Gal_Q, which would imply the categoricity statement. It follows from the above that our conjecture is a consequence of Drinfeld's conjecture which states that GT is isomorphic to Gal_Q.  

 

 

Wed, 10 Jun 2020
10:00
Virtual

TBA

Mehdi Yazdi
(University of Oxford)
Tue, 09 Jun 2020
16:30
Virtual

Replica Symmetry Breaking for Random Regular NAESAT

Allan Sly
(Princeton)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Ideas from physics have predicted a number of important properties of random constraint satisfaction problems such as the satisfiability threshold and the free energy (the exponential growth rate of the number of solutions). Another prediction is the condensation regime where most of the solutions are contained in a small number of clusters and the overlap of two random solutions is concentrated on two points. We establish this phenomena in the random regular NAESAT model. Joint work with Danny Nam and Youngtak Sohn.

Tue, 09 Jun 2020

15:30 - 16:30

Characteristic polynomials of non-Hermitian matrices, duality, and Painlevé transcendents

Nick Simm
(University of Sussex)
Abstract

We study expectations of powers and correlations for characteristic polynomials of N x N non-Hermitian random matrices. This problem is related to the analysis of planar models (log-gases) where a Gaussian (or other) background measure is perturbed by a finite number of point charges in the plane. I will discuss the critical asymptotics, for example when a point charge collides with the boundary of the support, or when two point charges collide with each other (coalesce) in the bulk. In many of these situations, we are able to express the results in terms of Painlevé transcendents. The application to certain d-fold rotationally invariant models will be discussed. This is joint work with Alfredo Deaño (University of Kent).

Tue, 09 Jun 2020
15:00
Virtual

First-order phase transitions and efficient sampling algorithms

Will Perkins
(Illinois)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

What is the connection between phase transitions in statistical physics and the computational tractability of approximate counting and sampling? There are many fascinating answers to this question but many mysteries remain. I will discuss one particular type of a phase transition: the first-order phase in the Potts model on $\mathbb{Z}^d$ for large $q$, and show how tools used to analyze the phase transition can be turned into efficient algorithms at the critical temperature. In the other direction, I'll discuss how the algorithmic perspective can help us understand phase transitions.

Tue, 09 Jun 2020
14:15
L4

TBA

Alexander Kleshchev
(University of Oregon)
Tue, 09 Jun 2020
14:00
Virtual

Markov Chains for Programmable Active Matter

Dana Randall
(Georgia Tech)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Active matter describes ensembles of self-organizing agents, or particles, interacting with their local environments so that their micro-scale behavior determines macro-scale characteristics of the ensemble. While there has been a surge of activity exploring the physics underlying such systems, less attention has been paid to questions of how to program them to achieve desired outcomes. We will present some recent results designing programmable active matter for specific tasks, including aggregation, dispersion, speciation, and locomotion, building on insights from stochastic algorithms and statistical physics.

Tue, 09 Jun 2020

12:00 - 13:00
C1

TBA

Bastian Prasse
(Delft University of Technology)
Mon, 08 Jun 2020

16:00 - 17:00
Virtual

Kinetic transport in the Lorentz gas: classical and quantum

Jens Marklof
(Bristol University)
Abstract

In the first part of this lecture, I will discuss the proof of convergence of the Lorentz process, in the Boltzmann-Grad limit, to a random process governed by a generalised linear Boltzmann equation. This will hold for general scatterer configurations, including certain types of quasicrystals, and include the previously known cases of periodic and Poisson random scatterer configurations. The second part of the lecture will focus on quantum transport in the periodic Lorentz gas in a combined short-wavelength/Boltzmann-Grad limit, and I will report on some partial progress in this challenging problem. Based on joint work with Andreas Strombergsson (part I) and Jory Griffin (part II).

Mon, 08 Jun 2020
15:45
Virtual

The rates of growth in a hyperbolic group

Zlil Sela
(Hebrew University of Jerusalem)
Abstract

We study the countable set of rates of growth of a hyperbolic 
group with respect to all its finite generating sets. We prove that the 
set is well-ordered, and that every real number can be the rate of growth 
of at most finitely many generating sets up to automorphism of the group.

We prove that the ordinal of the set of rates of growth is at least $ω^ω$, 
and in case the group is a limit group (e.g., free and surface groups), it 
is $ω^ω$.

We further study the rates of growth of all the finitely generated 
subgroups of a hyperbolic group with respect to all their finite 
generating sets. This set is proved to be well-ordered as well, and every 
real number can be the rate of growth of at most finitely many isomorphism 
classes of finite generating sets of subgroups of a given hyperbolic 
group. Finally, we strengthen our results to include rates of growth of 
all the finite generating sets of all the subsemigroups of a hyperbolic 
group.

Joint work with Koji Fujiwara.