16:00
The Weil bound
Abstract
The Riemann hypothesis (RH) is one of the great open problems in
mathematics. It arose from the study of prime numbers in an analytic
context, and—as often occurs in mathematics—developed analogies in an
algebraic setting, leading to the influential Weil conjectures. RH for
curves over finite fields was proven in the 1940’s by Weil using
algebraic-geometric methods, and later reproven by Stepanov and
Bombieri by elementary means. In this talk, we use RH for curves to
prove the Weil bound for certain (Kloosterman) exponential sums, which
in turn is a fundamental tool in the study of prime numbers.
CANCELLED -- Classifying rigid Frobenius algebras in Dijkgraaf-Witten categories and their local modules
Abstract
THIS TALK IS CANCELLED DUE TO ILLNESS -- In this talk I will present classification results for rigid Frobenius algebras in Dijkgraaf–Witten categories ℨ( Vec(G)ᵚ ) over a field of arbitrary characteristic, generalising existing results by Davydov-Simmons. For this purpose, we provide a braided Frobenius monoidal functor from ℨ ( Vect(H)ᵚˡᴴ ) to ℨ( Vec(G)ᵚ ) for any subgroup H of G. I will also discuss about their categories of local modules, which are modular tensor categories by results of Kirillov–Ostrik in the semisimple case and Laugwitz–Walton in the general case. Joint work with Robert Laugwitz (Nottingham) and Sam Hannah (Cardiff).
Minimum curvature flow and martingale exit times
Abstract
What is the largest deterministic amount of time T∗ that a suitably normalized martingale X can be kept inside a convex body K in Rd? We show, in a viscosity framework, that T∗ equals the time it takes for the relative boundary of K to reach X(0) as it undergoes a geometric flow that we call (positive) minimum curvature flow. This result has close links to the literature on stochastic and game representations of geometric flows. Moreover, the minimum curvature flow can be viewed as an arrival time version of the Ambrosio–Soner codimension-(d − 1) mean curvature flow of the 1-skeleton of K. We present very preliminary sampling-based numerical approximations to the solution of the corresponding PDE. The numerical part is work in progress.
This work is based on a collaboration with Camilo Garcia Trillos, Martin Larsson, and Yufei Zhang.
14:15
K-theoretic DT/PT invariants on Calabi-Yau 4-(orbi)folds
Abstract
Donaldson-Thomas theory is classically defined for moduli spaces of sheaves over a Calabi-Yau threefold. Thanks to recent foundational work of Cao-Leung, Borisov-Joyce and Oh-Thomas, DT theory has been extended to Calabi-Yau 4-folds. We discuss how, in this context, one can define natural K-theoretic refinements of Donaldson-Thomas invariants (counting sheaves on Hilbert schemes) and Pandharipande-Thomas invariants (counting sheaves on moduli spaces of stable pairs) and how — conjecturally — they are related. Finally, we introduce an extension of DT invariants to Calabi-Yau 4-orbifolds, and propose a McKay-type correspondence, which we expect to be suitably interpreted as a wall-crossing phenomenon. Joint work (in progress) with Yalong Cao and Martijn Kool.
14:00
A dynamical system perspective of optimization in data science
Abstract
In this talk, I will discuss and introduce deep insight from the dynamical system perspective to understand the convergence guarantees of first-order algorithms involving inertial features for convex optimization in a Hilbert space setting.
Such algorithms are widely popular in various areas of data science (data processing, machine learning, inverse problems, etc.).
They can be viewed discrete as time versions of an inertial second-order dynamical system involving different types of dampings (viscous damping, Hessian-driven geometric damping).
The dynamical system perspective offers not only a powerful way to understand the geometry underlying the dynamic, but also offers a versatile framework to obtain fast, scalable and new algorithms enjoying nice convergence guarantees (including fast rates). In addition, this framework encompasses known algorithms and dynamics such as the Nesterov-type accelerated gradient methods, and the introduction of time scale factors makes it possible to further accelerate these algorithms. The framework is versatile enough to handle non-smooth and non-convex objectives that are ubiquituous in various applications.
13:00
Modern QFT Advances & Real-World Gravity
Abstract
Only a decade ago the detection of gravitational waves seemed like a fantasy to most, and merely a handful of
people in the world believed in the validity and even great potential of using the powerful framework of EFT, and
more generally -- advances in QFT to study gravity theory for real-world gravitational waves. I will present the
significant advancement accomplished uniquely via the tower of EFTs with the EFT of spinning gravitating objects,
and the incorporation of QFT advances, which my work has pioneered since those days. Today, only 6 years after
the official birth of precision gravity with a rapidly growing influx of gravitational-wave data, and a decade of great
theoretical progress, the power and insight of using modern QFT for real-world gravity have become incontestable.
16:00
The Dark Dimension
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.
Managing your supervisor
Abstract
Your supervisor is the person you will interact with on a scientific level most of all during your studies here. As a result, it is vital that you establish a good working relationship. But how should you do this? In this session we discuss tips and tricks for getting the most out of your supervisions to maximize your success as a researcher. Note that this session will have no faculty in the audience in order to allow people to speak openly about their experiences.
Identifying cell-to-cell variability using mathematical and statistical modelling
Abstract
Cell-to-cell variability is often a primary source of variability in experimental data. Yet, it is common for mathematical analysis of biological systems to neglect biological variability by assuming that model parameters remain fixed between measurements. In this two-part talk, I present new mathematical and statistical tools to identify cell-to-cell variability from experimental data, based on mathematical models with random parameters. First, I identify variability in the internalisation of material by cells using approximate Bayesian computation and noisy flow cytometry measurements from several million cells. Second, I develop a computationally efficient method for inference and identifiability analysis of random parameter models based on an approximate moment-matched solution constructed through a multivariate Taylor expansion. Overall, I show how analysis of random parameter models can provide more precise parameter estimates and more accurate predictions with minimal additional computational cost compared to traditional modelling approaches.
On quivers, Auslander algebras and derived equivalences
Abstract
Auslander-Reiten theory provides lots of powerful tools to study algebras of finite representation type. One of these is Auslander correspondence, a well-known result establishing a bijection between the class of algebras of finite representation type and their corresponding Auslander algebras. I will present these classical results in a key example: the class of algebras associated to quivers of type A_n. I will talk about well-known results regarding their derived equivalence with another class of algebras, and I will present a more recent result regarding the perfect derived category of the Auslander algebras of type A_n.
Centre for Topological Data Analysis Centre Meeting
Details of speakers and schedule will be posted here nearer the time.
Abstract
Here is the program.
10:00
Fast solver for electric motor design
Abstract
Monumo is interested in computing physical properties of electric motors (torque, efficiency, back EMF) from their designs (shapes, materials, currents). This involves solving Maxwell's equations (non-linear PDEs). They currently compute the magnetic flux, and then use that to compute the other properties of interest. The main challenge they face is that they want to do this for many, many different designs. There seems to be lots of redundancy here, but exploiting it has proved difficult.
Sensitivity of robust optimization over an adapted Wasserstein ambiguity set
Abstract
In this talk, we consider the sensitivity to the model uncertainty of an optimization problem. By introducing adapted Wasserstein perturbation, we extend the classical results in a static setting to the dynamic multi-period setting. Under mild conditions, we give an explicit formula for the first order approximation to the value function. An optimization problem with a cost of weak type will also be discussed.
TBA; Joint Logic-Number Theory seminar, see NT listing and note unusual time
16:00
Height bounds for isogeny coincidences between families of elliptic curves
Abstract
The Zilber-Pink conjecture predicts that there should be only finitely
many algebraic numbers t such that the three elliptic curves with
j-invariants t, -t, 2t are all isogenous to each other. Using previous
work of Habegger and Pila, it suffices to prove a height bound for such
t. I will outline the proof of this height bound by viewing periods of
the elliptic curves as values of G-functions. An innovation in this
work is that both complex and p-adic periods are required. This is
joint work with Christopher Daw.
15:00
Compactified Universal Jacobians over Stacks of Stable Curves via GIT
Abstract
Associated to any smooth projective curve C is its degree d Jacobian variety, parametrising isomorphism classes of degree d line bundles on C. Letting the curve vary as well, one is led to the universal Jacobian stack. This stack admits several compactifications over the stack of marked stable curves, depending on the choice of a stability condition. In this talk I will introduce these compactified universal Jacobians, and explain how their moduli spaces can be constructed using Geometric Invariant Theory (GIT). This talk is based on arXiv:2210.11457.
Primal dual methods for Wasserstein gradient flows
Abstract
Combining the classical theory of optimal transport with modern operator splitting techniques, I will present a new numerical method for nonlinear, nonlocal partial differential equations, arising in models of porous media,materials science, and biological swarming. Using the JKO scheme, along with the Benamou-Brenier dynamical characterization of the Wasserstein distance, we reduce computing the solution of these evolutionary PDEs to solving a sequence of fully discrete minimization problems, with strictly convex objective function and linear constraint. We compute the minimizer of these fully discrete problems by applying a recent, provably convergent primal dual splitting scheme for three operators. By leveraging the PDE’s underlying variational structure, ourmethod overcomes traditional stability issues arising from the strong nonlinearity and degeneracy, and it is also naturally positivity preserving and entropy decreasing. Furthermore, by transforming the traditional linear equality constraint, as has appeared in previous work, into a linear inequality constraint, our method converges in fewer iterations without sacrificing any accuracy. We prove that minimizers of the fully discrete problem converge to minimizers of the continuum JKO problem as the discretization is refined, and in the process, we recover convergence results for existing numerical methods for computing Wasserstein geodesics. Simulations of nonlinear PDEs and Wasserstein geodesics in one and two dimensions that illustrate the key properties of our numerical method will be shown.
14:00
Non-invertible Symmetries in 5d Chern-Simons theories
Note: we would recommend to join the meeting using the Zoom client for best user experience.
It is also possible to join online via Zoom.
Abstract
Electric 1-form symmetries are generically broken in gauge theories with Chern-Simons terms. In this talk we discuss how infinite subsets of these symmetries become non-invertible topological defects. Time permitting we will also discuss generalizations and applications to the Swampland program in relation to the completeness hypothesis.
Mathematrix: Applying for Academic and Non-academic Jobs
Abstract
We will be joined by Frances Kirwan to talk about the various careers available for Mathematicians and how to be a successful applicant.
Plant morphogenesis across scales
Biography
After a doctorate in physics at the École normale supérieure in Paris, Arezki Boudaoud completed his post-doctorate in the Mathematics Department of the prestigious MIT (Massachusetts Institute of Technology). He then returned to the Statistical Physics Laboratory of the ENS ULM as a research officer. His work focused on liquid films and thin solids. In parallel, he began to take an interest in morphogenesis in the living and identified the contributions of the mechanical forces to the growth of yeast and the development of plants.
In 2009 the physicist switched to study biology: he joined the École normale supérieure de Lyon as a professor in the Department of Biology and has since led an interdisciplinary team in the Reproduction and development of Plants (RDP) laboratory and the Joliot-Curie laboratory (LJC). The team, entitled "Biophysics and Development", works to understand the mechanisms of morphogenesis in plants, combining tools of biology and physics.
Taken from ENS Lyon website
Abstract
What sets the size and form of living organisms is still, by large, an open question. During this talk, I will illustrate how we are addressing this question by examining the links between spatial scales, from subcellular to organ, both experimentally and theoretically. First, I will present how we are deriving continuous plant growth mechanical models using homogenisation. Second, I will discuss how directionality of organ growth emerges from cell level. Last, I will present predictions of fluctuations at multiple scales and experimental tests of these predictions, by developing a data analysis approach that is broadly relevant to geometrically disordered materials.
Sustained oscillations in hyperbolic-parabolic systems of viscoelasticity
Abstract
This talk is motivated by work on the existence theory for viscoelasticity of Kelvin-Voigt type with non-convex stored energies (joint with K. Koumatos (U. of Sussex), C. Lattanzio and S. Spirito (U. of LAquila)), which shows propagation of H1-regularity for the deformation gradient of weak solutions for semiconvex stored energies. It turns out that weak solutions with deformation gradient in H1 are in fact unique in two-space dimensions, providing a striking analogy to corresponding results in the theory of 2D Euler equations with bounded vorticity.
While weak solutions still exist for initial data in L2, oscillations on the deformation gradi- ent can now persist and propagate in time. This can be seen via a counterexample indicating that for non-monotone stress-strain relations in 1-d oscillations of the strain lead to solutions with sustained oscillations. The existence of sustained oscillations in hyperbolic-parabolic system is then studied in several examples motivated by viscoelasticity and thermoviscoelas- ticity. Sufficient conditions for persistent oscillations are developed for linear problems, and examples in some nonlinear systems of interest. In several space dimensions oscillatory exam- ples are associated with lack of rank-one convexity of the stored energy. Nonlinear examples in models with thermal effects are also developed.
16:00
Persistent homology in theory and practice
Abstract
Persistent homology is both a powerful framework for data science and a fruitful source of mathematical questions. Here, we will give an introduction to both single-parameter and multiparameter persistent homology. We will see some examples of how topology has been successfully applied to the real world, and also explore some of the pure-mathematical ideas that arise from this new perspective.
16:00
Interacting Systems – where Analysis, PDEs and Probability meet
Abstract
We are surrounded by systems that involve many elements and the interactions between them: the air we breathe, the galaxies we watch, herds of animals roaming the African planes and even us – trying to decide on whom to vote for.
As common as such systems are, their mathematical investigation is far from simple. Motivated by the realisation that in most cases we are not truly interested in the individual behaviour of each and every element of the system but in the average behaviour of the ensemble and its elements, a new approach emerged in the late 1950s - the so-called mean field limits approach. The idea behind this approach is fairly intuitive: most systems we encounter in real life have some underlying pattern – a correlation relation between its elements. Giving a mathematical interpretation to a given phenomenon and its emerging pattern with an appropriate master/Liouville equation, together with such correlation relation, and taking into account the large number of elements in the system results in a limit equation that describes the behaviour of an average limit element of the system. With such equation, one hopes, we could try and understand better the original ensemble.
In our talk we will give the background to the formation of the ideas governing the mean field limit approach and focus on one of the original models that motivated the birth of the field – Kac’s particle system. We intend to introduce Kac’s model and its associated (asymptotic) correlation relation, chaos, and explore attempts to infer information from it to its mean field limit – The Boltzmann-Kac equation.
Gaussian multiplicative chaos measures, Painlevé equations, and conformal blocks
Abstract
Conformal blocks appear in several areas of mathematical physics from random geometry to black hole physics. A probabilistic notion of conformal blocks using gaussian multiplicative chaos measures was recently formulated by Promit Ghosal, Guillaume Remy, Xin Sun, Yi Sun (arxiv:2003.03802). In this talk, I will show that the semiclassical limit of the probabilistic conformal blocks recovers a special case of the elliptic form of Painlevé VI equation, thereby proving a conjecture by Zamolodchikov. This talk is based on an upcoming paper with Promit Ghosal and Andrei Prokhorov.