Tue, 10 Mar 2020
16:00
C1

Pick's theorem and the Kadison-Singer problem

Michael Hartz
(University of Saarbrucken)
Abstract

Pick's theorem is a century-old theorem in complex analysis about interpolation with bounded analytic functions. The Kadison-Singer problem was a question about states on $C^*$-algebras originating in the work of Dirac on the mathematical description of quantum mechanics. It was solved by Marcus, Spielman and Srivastava a few years ago.

I will talk about Pick's theorem, the Kadison-Singer problem and how the two can be brought together to solve interpolation problems with infinitely many nodes. This talk is based on joint work with Alexandru Aleman, John McCarthy and Stefan Richter.

Tue, 10 Mar 2020

15:30 - 16:30
L6

Random matrices, random Young diagrams, and some random operators

Sasha Sodin
(Queen Mary University of London)
Abstract

The rows of a Young diagram chosen at random with respect to the Plancherel measure are known to share some features with the eigenvalues of the Gaussian Unitary Ensemble. We shall discuss several ideas, going back to the work of Kerov and developed by Biane and by Okounkov, which to some extent clarify this similarity. Partially based on joint work with Jeong and on joint works in progress with Feldheim and Jeong and with Täufer.

Tue, 10 Mar 2020
14:30
L2

Random smoothies: C-infinity but nowhere analytic

Nick Trefethen
Abstract

Since Weierstrass it has been known that there are functions that are continuous but nowhere differentiable.  A beautiful example (with probability 1) is any Brownian path.  Brownian paths can be constructed either in space, via Brownian bridge, or in Fourier space, via random Fourier series.

What about functions, which we call "smoothies", that are $C^\infty$ but nowhere analytic?  This case is less familiar but analogous, and again one can do the construction either in space or Fourier space.  We present the ideas and illustrate them with the new Chebfun $\tt{smoothie}$ command.  In the complex plane, the same idea gives functions analytic in the open unit disk and $C^\infty$ on the unit circle, which is a natural boundary.

Tue, 10 Mar 2020
14:15
L4

An uncountable Mittag-Leffler condition with applications to p-adic locally convex vector spaces

Andrea Pulita
(Universite Grenoble-Alpes)
Abstract

Mittag-Leffler condition ensures the exactness of the inverse limit of short exact sequences indexed on a partially ordered set admitting a countable cofinal subset. We extend Mittag-Leffler condition by relatively relaxing the countability assumption. As an application we prove an exactness result about the completion functor in the category of ultrametric locally convex vector spaces, and in particular we prove that a strict morphism between these spaces has closed image if its kernel is Fréchet.

Tue, 10 Mar 2020
14:00
L6

Cycles of length three and four in tournaments

Jonathan Noel
(Warwick)
Abstract

Given a tournament with $d{n \choose 3}$ cycles of length three, how many cycles of length four must there be? Linial and Morgenstern (2016) conjectured that the minimum is asymptotically attained by "blowing up" a transitive tournament and orienting the edges randomly within the parts. This is reminiscent of the tight examples for the famous Triangle and Clique Density Theorems of Razborov, Nikiforov and Reiher. We prove the conjecture for $d \geq \frac{1}{36}$ using spectral methods. We also show that the family of tight examples is more complex than expected and fully characterise it for $d \geq \frac{1}{16}$. Joint work with Timothy Chan, Andrzej Grzesik and Daniel Král'.

Tue, 10 Mar 2020
14:00
L2

Motion correction methods for undersampled 3D imaging

Joseph Field
(Oxford)
Abstract

Reconstruction of 3D images from a set of 2D X-ray projections is a standard inverse problem, particularly in medical imaging. Improvements in imaging technologies have enabled the development of a flat-panel X-ray source, comprised of an array of low-power emitters that are fired in quick succession. During a complete firing sequence, there may be shifts in the patient’s resting position which ultimately create artifacts in the final reconstruction. We present a method for correcting images with respect to unknown body motion, focusing on the case of simple rigid body motion. Image reconstructions are obtained by solving a sparse linear inverse problem, with respect to not only the underlying body but also the unknown velocity. Results find that reconstructions of a moving body can be much better than those obtained by measuring a stationary body, as long as the underlying motion is well approximated.

Tue, 10 Mar 2020

12:45 - 14:00
C3

Multi-Objective Resource Allocation for Cognitive Radio Networks (An Exercise in Study Group Management)

Joseph Field
(Oxford University)
Abstract

In this talk we will discuss a problem that was worked on during MISGSA 2020, a Study Group held in January at The University of Zululand, South Africa.

We look at a communication network with two types of users - Primary users (PU) and Secondary users (SU) - such that we reduce the network to a set of overlapping sub-graphs consisting of SUs indexed by a specific PU. Within any given sub-graph, the PU may be communicating at a certain fixed frequency F. The respective SUs also wish to communicate at the same frequency F, but not at the expense of interfering with the PU signal. Therefore if the PU is active then the SUs will not communicate.

In an attempt to increase information throughput in the network, we instead allow the SUs to communicate at a different frequency G, which may or may not interfere with a different sub-graph PU in the network, leading to a multi-objective optimisation problem.

We will discuss not only the problem formulation and possible approaches for solving it, but also the pitfalls that can be easily fallen into during study groups.

Tue, 10 Mar 2020
12:00
L4

The central sphere of a gravitational instanton

Prof Nigel Hitchin
(Oxford)
Abstract

The asymptotically locally Euclidean Ricci-flat self-dual 4-manifolds were classified and constructed by Kronheimer as hyperkahler quotients. Each belongs to a finite-dimensional family and a particularly interesting subfamily consists of manifolds with a circle action which can be identified with the minimal resolution of a quotient singularity C^2/G where G is a finite subgroup of SU(2). The resolved singularity is a configuration of rational curves and there is a distinguished one which is pointwise fixed by the circle action. The talk will give an explicit description of the induced metric on this central sphere, and involves twistor theory and the geometry of the lines on a cubic surface.
 

Tue, 10 Mar 2020

12:00 - 13:00
C1

Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data

Fernando Rosas
(Imperial College)
Abstract

The notion of emergence is at the core of many of the most challenging open scientific questions, being so much a cause of wonder as a perennial source of philosophical headaches. Two classes of emergent phenomena are usually distinguished: strong emergence, which corresponds to supervenient properties with irreducible causal power; and weak emergence, which are properties generated by the lower levels in such "complicated" ways that they can only be derived by exhaustive simulation. While weak emergence is generally accepted, a large portion of the scientific community considers causal emergence to be either impossible, logically inconsistent, or scientifically irrelevant.

In this talk we present a novel, quantitative framework that assesses emergence by studying the high-order interactions of the system's dynamics. By leveraging the Integrated Information Decomposition (ΦID) framework [1], our approach distinguishes two types of emergent phenomena: downward causation, where macroscopic variables determine the future of microscopic degrees of freedom; and causal decoupling, where macroscopic variables influence other macroscopic variables without affecting their corresponding microscopic constituents. Our framework also provides practical tools that are applicable on a range of scenarios of practical interest, enabling to test -- and possibly reject -- hypotheses about emergence in a data-driven fashion. We illustrate our findings by discussing minimal examples of emergent behaviour, and present a few case studies of systems with emergent dynamics, including Conway’s Game of Life, neural population coding, and flocking models.
[1] Mediano, Pedro AM, Fernando Rosas, Robin L. Carhart-Harris, Anil K. Seth, and Adam B. Barrett. "Beyond integrated information: A taxonomy of information dynamics phenomena." arXiv preprint arXiv:1909.02297 (2019).
 

Mon, 09 Mar 2020
16:00
L4

A Minkowski problem and the Brunn-Minkowski inequality for nonlinear capacity

Murat Akman
(University of Essex)
Abstract


The classical Minkowski problem consists in finding a convex polyhedron from data consisting of normals to their faces and their surface areas. In the smooth case, the corresponding problem for convex bodies is to find the convex body given the Gauss curvature of its boundary, as a function of the unit normal. The proof consists of three parts: existence, uniqueness and regularity. 

 

In this talk, we study a Minkowski problem for certain measure, called p-capacitary surface area measure, associated to a compact convex set $E$ with nonempty interior and its $p-$harmonic capacitary function (solution to the p-Laplace equation in the complement of $E$).  If $\mu_p$ denotes this measure, then the Minkowski problem we consider in this setting is that; for a given finite Borel positive measure $\mu$ on $\mathbb{S}^{n-1}$, find necessary and sufficient conditions for which there exists a convex body $E$ with $\mu_p =\mu$. We will discuss the existence, uniqueness, and regularity of this problem which have deep connections with the Brunn-Minkowski inequality for p-capacity and Monge-Amp{\`e}re equation.

 

Mon, 09 Mar 2020
15:45
L6

Non-uniquely ergodic arational trees in the boundary of Outer space

Radhika Gupta
(Bristol University)
Abstract

The mapping class group of a surface is associated to its Teichmüller space. In turn, its boundary consists of projective measured laminations. Similarly, the group of outer automorphisms of a free group is associated to its Outer space. Now the boundary contains equivalence classes of arationaltrees as a subset. There exist distinct projective measured laminations that have the same underlying geodesic lamination, which is also minimal and filling. Such geodesic laminations are called `non-uniquely ergodic'. I will talk briefly about laminations on surfaces and then present a construction of non-uniquely ergodic phenomenon for arational trees. This is joint work with Mladen Bestvina and Jing Tao.

Mon, 09 Mar 2020

15:45 - 16:45
L3

Infinite limit of (fully connected) neural networks: Gaussian processes and kernel methods.

FRANCK GABRIEL
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

In practice, it is standard to initialize Artificial Neural Networks (ANN) with random parameters. We will see that this allows to describe, in the functional space, the limit of the evolution of (fully connected) ANN when their width tends towards infinity. Within this limit, an ANN is initially a Gaussian process and follows, during learning, a gradient descent convoluted by a kernel called the Neural Tangent Kernel. 

This description allows a better understanding of the convergence properties of neural networks, of how they generalize to examples during learning and has 

practical implications on the training of wide ANNs. 

Mon, 09 Mar 2020

14:15 - 15:15
L3

Hydrodynamic limit for a facilitated exclusion process

MARIELLE SIMON
(INRIA LILLE)
Abstract


During this talk we will be interested in a one-dimensional exclusion process subject to strong kinetic constraints, which belongs to the class of cooperative kinetically constrained lattice gases. More precisely, its stochastic short range interaction exhibits a continuous phase transition to an absorbing state at a critical value of the particle density. We will see that the macroscopic behavior of this microscopic dynamics, under periodic boundary conditions and diffusive time scaling, is ruled by a non-linear PDE belonging to free boundary problems (or Stefan problems). One of the ingredients is to show that the system typically reaches an ergodic component in subdiffusive time.

Based on joint works with O. Blondel, C. Erignoux and M. Sasada

Mon, 09 Mar 2020

14:15 - 15:15
L4

Toric geometry of exceptional holonomy manifolds

Thomas Madsen
(Buckingham)
Abstract

Exceptional holonomy manifolds come with certain geometric data that include a Ricci flat metric. Finding examples is therefore very difficult. The task can be made more tractable by imposing symmetry.  The focus of this talk is the case of torus symmetry. For a particular rank of the torus, one gets a natural parameterisation of the orbit space in terms of so-called multi-moment maps. I will discuss aspects of the local and global geometry of these 'toric' exceptional holonomy manifolds. The talk is based on joint work with Andrew Swann.

Mon, 09 Mar 2020
12:45
L3

Bottom-up construction of 4d N=2 SCFTs

Carlo Meneghelli
(Oxford)
Abstract

In this talk, I will argue how the observation that four-dimensional N=2 superconformal field theories are interconnected via the operation of Higgsing can be turned into an effective method to construct such SCFTs. A fundamental role is played by the (generalized) free field realization of the associated VOAs.

Fri, 06 Mar 2020

15:00 - 16:00
N3.12

Estimating the reach of a submanifold

John Harvey
(Swansea University)
Abstract

The reach is an important geometric invariant of submanifolds of Euclidean space. It is a real-valued global invariant incorporating information about the second fundamental form of the embedding and the location of the first critical point of the distance from the submanifold. In the subject of geometric inference, the reach plays a crucial role. I will give a new method of estimating the reach of a submanifold, developed jointly with Clément Berenfeld, Marc Hoffmann and Krishnan Shankar.

Fri, 06 Mar 2020

14:00 - 15:00
L1

Communicating Mathematics to Non-Specialists

James Munro and Mareli Grady
Abstract

Have you ever had to explain mathematics to someone who isn’t a mathematician? Maybe you’ve been cornered at a family gathering by an interested relative. Maybe you’d like to explain to a potential employer what you’ve been doing for the last three years. Maybe you’ve agreed to explain vector calculus to a room of 13-year-olds. We’ve all been there. This session will cover some top tips for talking about maths in a way that makes sense to non-mathematicians, with specific examples from the outreach team.

Fri, 06 Mar 2020

14:00 - 15:00
L3

Multiscale modelling of cell fate specification

Professor Adriana Dawes
(The Ohio State University)
Abstract

During development, cells take on specific fates to properly build tissues and organs. These cell fates are regulated by short and long range signalling mechanisms, as well as feedback on gene expression and protein activity. Despite the high conservation of these signalling pathways, we often see different cell fate outcomes in similar tissues or related species in response to similar perturbations. How these short and long range signals work to control patterning during development, and how the same network can lead to species specific responses to perturbations, is not yet understood. Exploiting the high conservation of developmental pathways, we theoretically and experimentally explore mechanisms of cell fate patterning during development of the egg laying structure (vulva) in nematode worms. We developed differential equation models of the main signalling networks (EGF/Ras, Notch and Wnt) responsible for vulval cell fate specification, and validated them using experimental data. A complex, biologically based model identified key network components for wild type patterning, and relationships that render the network more sensitive to perturbations. Analysis of a simplified model indicated that short and long range signalling play complementary roles in developmental patterning. The rich data sets produced by these models form the basis for further analysis and increase our understanding of cell fate regulation in development.

Thu, 05 Mar 2020
16:00
L6

Dynamical systems for arithmetic schemes

Christopher Deninger
(University of Muenster)
Abstract

We construct a functor from arithmetic schemes (and dominant morphisms) to dynamical systems which allows to recover the Hasse-Weil zeta function of a scheme as a Ruelle type zeta function of the corresponding dynamical system. We state some further properties of this correspondence and explain the relation to the work of Kucharczyk and Scholze who realize the Galois groups of fields containing all roots of unity as (etale) fundamental groups of certain topological spaces. We also explain the main reason why our dynamical systems are not yet the right ones and in what regard they need to be refined.
 

Thu, 05 Mar 2020

16:00 - 17:30
L3

IAM Seminar TBC

Jessica Williams and Andrew Krause
(Mathematical Institute (University of Oxford))
Abstract


Heterogeneity in Space and Time: Novel Dispersion Relations in Morphogenesis

Dr. Andrew Krause

Motivated by recent work with biologists, I will showcase some results on Turing instabilities in complex domains. This is scientifically related to understanding developmental tuning in the whiskers of mice, and in synthetic quorum-sensing patterning of bacteria. Such phenomena are typically modelled using reaction-diffusion systems of morphogens, and one is often interested in emergent spatial and spatiotemporal patterns resulting from instabilities of a homogeneous equilibrium. In comparison to the well-known effects of how advection or manifold structure impacts the modes which may become unstable in such systems, I will present results on instabilities in heterogeneous systems, reaction-diffusion systems on evolving manifolds, as well as layered reaction-diffusion systems. These contexts require novel formulations of classical dispersion relations, and may have applications beyond developmental biology, such as in understanding niche formation for populations of animals in heterogeneous environments. These approaches also help close the vast gap between the simplistic theory of instability-driven pattern formation, and the messy reality of biological development, though there is still much work to be done in concretely demonstrating such a theory's applicability in real biological systems.
 

Cavity flow characteristics and applications to kidney stone removal

Dr. Jessica Williams


Ureteroscopy is a minimally invasive surgical procedure for the removal of kidney stones. A ureteroscope, containing a hollow, cylindrical working channel, is inserted into the patient's kidney. The renal space proximal to the scope tip is irrigated, to clear stone particles and debris, with a saline solution that flows in through the working channel. We consider the fluid dynamics of irrigation fluid within the renal pelvis, resulting from the emerging jet through the working channel and return flow through an access sheath . Representing the renal pelvis as a two-dimensional rectangular cavity, we investigate the effects of flow rate and cavity size on flow structure and subsequent clearance time of debris. Fluid flow is modelled with the steady incompressible Navier-Stokes equations, with an imposed Poiseuille profile at the inlet boundary to model the jet of saline, and zero-stress conditions on the outlets. The resulting flow patterns in the cavity contain multiple vortical structures. We demonstrate the existence of multiple solutions dependent on the Reynolds number of the flow and the aspect ratio of the cavity using complementary numerical simulations and PIV experiments. The clearance of an initial debris cloud is simulated via solutions to an advection-diffusion equation and we characterise the effects of the initial position of the debris cloud within the vortical flow and the Péclet number on clearance time. With only weak diffusion, debris that initiates within closed streamlines can become trapped. We discuss a flow manipulation strategy to extract debris from vortices and decrease washout time.

 

Thu, 05 Mar 2020

16:00 - 17:00
L4

Calibrating financial models and extracting implied information using neural networks

Anastasia Borovykh
Abstract

In this talk we will discuss a data-driven approach based on neural networks (NN) for calibrating financial asset price models. Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on available financial option prices. The framework consists of two parts: a forward pass in which we train the weights of the NN off-line, valuing options under many different asset model parameter settings; and a backward pass, in which we evaluate the trained NN-solver on-line, aiming to find the weights of the neurons in the input layer. We will show how the same data-driven approach can be used to estimate the Black-Scholes implied volatility and dividend yield for American options in a fast and robust way. We then discuss the complexity of the optimization problem through an analysis of the loss surface of the neural network. We finally will present some numerical examples which show that neural networks can be an efficient and reliable technique for the calibration of financial assets and the extraction of implied information.

Thu, 05 Mar 2020

15:00 - 16:00
C4

Connections in symplectic topology

Todd Liebenschutz-Jones
Abstract

Here, a connection is a algebraic structure that is weaker than an algebra and stronger than a module. I will define this structure and give examples. I will then define the quantum product and explain how connections capture important properties of this product. I will finish by stating a new result which describes how this extends to equivariant Floer cohomology. No knowledge of symplectic topology will be assumed in this talk.
 

Thu, 05 Mar 2020

15:00 - 16:00
N3.12

On 2D gravity

Connor Behan
Thu, 05 Mar 2020
13:00
N3.12

Statistics for ethical research and decision-making

Jane Hutton
(University of Warwick)
Abstract

If asked, we all say we aim to to good research and make sensible decisions. In mathematics, the choice of criteria to optimise is often explicit, and we know there is no complete ordering in more than one dimension.

Statisticians involved in multi-disciplinary research need to reflect on how their understanding of uncertainty and statistical methods can contribute to reliable and reproducible research. The ISI Declaration of Professional Ethics provides a framework for statisticians.  Judging what is "normal" and what is "best" requires an appreciation of the assumptions and guidelines of other disciplines.

I will briefly discuss the requirements for design and analysis in medical research, and relate this to debates on reproducible research and p-values in social science research. Issues arising from informed and uninformed consent will be outlined.

Examples might include medical research in developing countries, toxic tort or wrongful birth claims, big data and use of routine administrative or commercial data.

Thu, 05 Mar 2020

12:00 - 13:00
L4

Sobolev embeddings, rearrangement-invariant spaces and Frostman measures

Lenka Slavíková
(University of Bonn)
Abstract

In this talk, we discuss Sobolev embeddings into rearrangement-invariant function spaces on (regular) domains in $\mathbb{R}^n$ endowed with measures whose decay on balls is dominated by a power $d$ of their radius, called $d$-Frostman measures. We show that these embeddings can be deduced from one-dimensional inequalities for an operator depending on $n$, $d$ and the order $m$ of the Sobolev space. We also point out an interesting feature of this theory - namely that the results take a substantially different form depending on whether the measure is decaying fast ($d\geq n-m$) or slowly ($d<n-m$). This is a
joint work with Andrea Cianchi and Lubos Pick.

Wed, 04 Mar 2020
16:00
C1

Automorphisms of free groups and train tracks

Monika Kudlinska
(University of Bristol)
Abstract


 Let phi be an outer automorphism of a free group. A topological representative of phi is a marked graph G along with a homotopy equivalence f: G → G which induces the outer automorphism phi on the fundamental group of G. For any given outer automorphism, the choice of topological representative is far from unique. Handel and Bestvina showed that sufficiently nice automorphisms admit a special type of topological representative called a train track map, whose dynamics can be well understood. 
In this talk I will outline the definition and motivation for train tracks, and give a sketch of Handel and Bestvina’s algorithm for finding them.
 

Wed, 04 Mar 2020
14:00
N3.12

Machine Learning with Hawkes Processes

Saad Labyad
(Oxford University)
Abstract

Hawkes processes are a class of point processes used to model self-excitation and cross-excitation between different types of events. They are characterized by the auto-regressive structure of their conditional intensity, and there exists several extensions to the original linear Hawkes model. In this talk, we start by defining Hawkes processes and give a brief overview of some of their basic properties. We then review some approaches to parametric and non-parametric estimation of Hawkes processes and discuss some applications to problems with large data sets in high frequency finance and social networks.

Tue, 03 Mar 2020
16:00
C1

Amenability, paradoxicality and uniform Roe algebras.

Fernando Lledo
(Madrid)
Abstract

There is a classical mathematical theorem (due to Banach and Tarski) that implies the following shocking statement: An orange can be divided into finitely many pieces, these pieces can be rotated and rearranged in such a way to yield two oranges of the same size as the original one. In 1929 J.~von Neumann recognizes that one of the reasons underlying the Banach-Tarski paradox is the fact that on the unit ball there is an action of a discrete subgroup of isometries that fails to have the property of amenability ("Mittelbarkeit" in German).

In this talk we will address more recent developments in relation to the dichotomy amenability vs. existence of paradoxical decompositions in different mathematical situations like, e.g., for metric spaces, for algebras and operator algebras. We will present a result unifying all these approaches in terms of a class of C*-algebras, the so-called uniform Roe algebras.

P. Ara, K. Li, F. Lledó and J. Wu, Amenability of coarse spaces and K-algebras , Bulletin of Mathematical Sciences 8 (2018) 257-306;
P. Ara, K. Li, F. Lledó and J. Wu, Amenability and uniform Roe algebras, Journal of Mathematical Analysis and Applications 459 (2018) 686-716;

Tue, 03 Mar 2020

15:30 - 16:30
L4

Skein-triangulated representations of generalized braid categories

Timothy Logvinenko
(Cardiff University)
Abstract

The ordinary braid group ${\mathrm Br}_n$ is a well-known algebraic structure which encodes configurations of $n$ non-touching strands (“braids”) up to continious transformations (“isotopies”). A classical result of Khovanov and Thomas states that there is a natural categorical action of ${\mathrm Br}_n$ on the derived category of the cotangent bundle of the variety of complete flags in ${\mathbb C}^n$. 

In this talk, I will introduce a new structure: the category ${\mathrm GBr}_n$ of generalised braids. These are the braids whose strands are allowed to touch in a certain way. They have multiple endpoint configurations and can be non-invertible, thus forming a category rather than a group. In the context of triangulated categories, it is natural to impose certain relations which result in the notion of a skein-triangulated representation of ${\mathrm GBr}_n$. A decade-old conjecture states that there is a skein-triangulated action of ${\mathrm GBr}_n$ on the cotangent bundles of the varieties of full and partial flags in ${\mathbb C}^n$. We prove this conjecture for $n = 3$. We also show that, in fact, any categorical action of ${\mathrm Br}_n$ can be lifted to a categorical action of ${\mathrm GBr}_n$, generalising a result of Ed Segal. This is a joint work with Rina Anno and Lorenzo De Biase.

Tue, 03 Mar 2020
14:30
L2

Stochastic rounding: effect on linear algebra operations and application to time-dependent PDEs

Matteo Croci
(Oxford)
Abstract

The standard rounding procedure in floating-point computations is round to nearest (RN). In this talk we consider an alternative rounding strategy called stochastic rounding (SR) which has the appealing property of being exact (actually exact!) in expectation. In the first part of the talk we discuss recent developments in probabilistic rounding error analysis and we show how rounding errors grow at an O(\sqrt{n}) rate rather than O(n) when SR is employed. This shows that Wilkinson's rule of thumb provably holds for this type of rounding. In the second part of the talk we consider the application of SR to parabolic PDEs admitting a steady state solution. We show that when the heat equation is solved in half precision RN fails to compute an accurate solution, while SR successfully solves the problem to decent accuracy.
 

Tue, 03 Mar 2020
14:15
L4

2-representation theory of Soergel bimodules

Vanessa Miemietz
(University of East Anglia)
Abstract

I will explain the basics of 2-representation theory and will explain an approach to classifying 'simple' 2-representations of the Hecke 2-category (aka Soergel bimodules) for finite Coxeter types.

Tue, 03 Mar 2020
14:00
L6

Planar graphs: One graph to rule them all

Marthe Bonamy
(Bordeaux)
Abstract

Consider all planar graphs on n vertices. What is the smallest graph that contains them all as induced subgraphs? We provide an explicit construction of such a graph on $n^{4/3+o(1)}$ vertices, which improves upon the previous best upper bound of $n^{2+o(1)}$, obtained in 2007 by Gavoille and Labourel.

In this talk, we will gently introduce the audience to the notion of so-called universal graphs (graphs containing all graphs of a given family as induced subgraphs), and devote some time to a key lemma in the proof. That lemma comes from a recent breakthrough by Dujmovic et al. regarding the structure of planar graphs, and has already many interesting consequences - we hope the audience will be able to derive more. This is based on joint work with Cyril Gavoille and Michal Pilipczuk.

Tue, 03 Mar 2020
14:00
L2

Deterministic Dynamic Pricing via Iterative Quadratic Programming

Jari Fowkes
(Oxford)
Abstract

We consider the problem of dynamically pricing multiple products on a network of resources, such as that faced by an airline selling tickets on its route network. For computational reasons this inherently stochastic problem is often approximated deterministically, however even the deterministic dynamic pricing problem can be impractical to solve. For this reason we have derived a novel iterative Quadratic Programming approximation to the deterministic dynamic pricing problem that is not only very fast to solve in practice but also exhibits a provably linear rate of convergence. This is joint work with Saksham Jain and Raphael Hauser.
 

Tue, 03 Mar 2020

12:00 - 13:00
C1

Dynamic approaches to measure heterogeneity in spatial networks

Vincenzo Nicosia
(Queen Mary University)
Abstract

Spatial networks are often the most natural way to represent spatial information of different kinds. One of the outstanding problems in current spatial network research is to effectively quantify the heterogeneity of the discrete-valued spatial distributions underlying a spatial graph. In this talk we will presentsome recent alternative approaches to estimate heterogeneity in spatial networks based on simple dynamical processes running on them.

Mon, 02 Mar 2020
16:00
L4

Improved convergence of low entropy Allen-Cahn flows to mean curvature flow and curvature estimates

Shengwen Wang
(Queen Mary University London)
Abstract

The parabolic Allen-Cahn equations is the gradient flow of phase transition energy and can be viewed as a diffused version of mean curvature flows of hypersurfaces. It has been known by the works of Ilmanen and Tonegawa that the energy densities of the Allen-Cahn flows converges to mean curvature flows in the sense of varifold and the limit varifold is integer rectifiable. It is not known in general whether the transition layers have higher regularity of convergence yet. In this talk, I will report on a joint work with Huy Nguyen that under the low entropy condition, the convergence of transition layers can be upgraded to C^{2,\alpha} sense. This is motivated by the work of Wang-Wei and Chodosh-Mantoulidis in elliptic case that under the condition of stability, one can upgrade the regularity of convergence.

Mon, 02 Mar 2020

16:00 - 17:00

Problems on compatible systems of Galois representations

Federico Amadio
Abstract

We will discuss some problems around independence of l in compatible systems of Galois representations, mostly focusing on the independence of l of algebraic monodromy groups. We will explain how these problems fit into the context of the Langlands program, and present results both in characteristic zero and in positive characteristic settings.

Mon, 02 Mar 2020
15:45
L6

Obstructing isotopies between surfaces in four manifolds

Hannah Schwartz
(Max Planck Institute Bonn)
Abstract

We will first construct pairs of homotopic 2-spheres smoothly embedded in a 4-manifold that are smoothly equivalent (via an ambient diffeomorphism preserving homology) but not even topologically isotopic. Indeed, these examples show that Gabai's recent "4D Lightbulb Theorem" does not hold without the 2-torsion hypothesis. We will proceed to discuss two distinct ways of obstructing such an isotopy, as well as related invariants which can be used to obstruct an isotopy between pairs of properly embedded disks (rather than spheres) in a 4-manifold.

Mon, 02 Mar 2020

15:45 - 16:45
L3

Mean-field Langevin dynamics and neural networks

ZHENJIE REN
(Université Paris Dauphine)
Abstract

The deep neural network has achieved impressive results in various applications, and is involved in more and more branches of science. However, there are still few theories supporting its empirical success. In particular, we miss the mathematical tool to explain the advantage of certain structures of the network, and to have quantitive error bounds. In our recent work, we used a regularised relaxed control problem to model the deep neural network.  We managed to characterise its optimal control by the invariant measure of a mean-field Langevin system, which can be approximated by the marginal laws. Through this study we understand the importance of the pooling for the deep nets, and are capable of computing an exponential convergence rate for the (stochastic) gradient descent algorithm.

Mon, 02 Mar 2020

14:15 - 15:15
L4

Cohomogeneity one families in Spin(7)-geometry

Fabian Lehmann
(UCL)
Abstract

An 8-dimensional Riemannian manifold with holonomy group contained in Spin(7) is Ricci-flat, but not Kahler. The condition that the holonomy reduces to Spin(7) is equivalent to a complicated system of non-linear PDEs. In the non-compact setting, symmetries can be used to reduce this complexity. In the case of cohomogeneity one manifolds, i.e. where a generic orbit has codimension one, the non-linear PDE system
reduces to a nonlinear ODE system. I will discuss recent progress in the construction of 1-parameter families of complete cohomogeneity one Spin(7) holonomy metrics. All examples are asymptotically conical (AC) or asymptotically locally conical (ALC).

 

Mon, 02 Mar 2020

14:15 - 15:15
L3

Empirical Measure and Small Noise Asymptotics under Large Deviation Scaling for Interacting Diffusions

AMARJIT BUDHIRAJA
(University of North Carolina)
Abstract

Consider a collection of particles whose state evolution is described through a system of interacting diffusions in which each particle
is driven by an independent individual source of noise and also by a small amount of noise that is common to all particles. The interaction between the particles is due to the common noise and also through the drift and diffusion coefficients that depend on the state empirical measure. We study large deviation behavior of the empirical measure process which is governed by two types of scaling, one corresponding to mean field asymptotics and the other to the Freidlin-Wentzell small noise asymptotics. 
Different levels of intensity of the small common noise lead to different types of large deviation behavior, and we provide a precise characterization of the various regimes. We also study large deviation behavior of  interacting particle systems approximating various types of Feynman-Kac functionals. Proofs are based on stochastic control representations for exponential functionals of Brownian motions and on uniqueness results for weak solutions of stochastic differential equations associated with controlled nonlinear Markov processes. 

Mon, 02 Mar 2020
12:45

Aspects of gauge-strings duality

Carlos Nunez
(Swansea)
Abstract

I will discuss recently published examples of SCFTs in
two dimensions and their dual backgrounds. Aspects of the
integrability of these string backgrounds will be described in
correspondence with those of the dual SCFTs. The comparison with four and
six dimensional examples will be presented. It time allows, the case of
conformal quantum mechanics will also be addressed.

Fri, 28 Feb 2020

16:00 - 17:00
L2

North Meets South

Elena Gal and Carolina Urzua-Torres
Abstract

Elena Gal
Categorification, Quantum groups and TQFTs

Quantum groups are mathematical objects that encode (via their "category of representations”) certain symmetries which have been found in the last several dozens of years to be connected to several areas of mathematics and physics. One famous application uses representation theory of quantum groups to construct invariants of 3-dimensional manifolds. To extend this theory to higher dimensions we need to “categorify" quantum groups - in essence to find a richer structure of symmetries. I will explain how one can approach such problem.

 

Carolina Urzua-Torres
Why you should not do boundary element methods, so I can have all the fun.

Boundary integral equations offer an attractive alternative to solve a wide range of physical phenomena, like scattering problems in unbounded domains. In this talk I will give a simple introduction to boundary integral equations arising from PDEs, and their discretization via Galerkin BEM. I will discuss some nice mathematical features of BEM, together with their computational pros and cons. I will illustrate these points with some applications and recent research developments.
 

Fri, 28 Feb 2020

14:00 - 15:00
L3

Diffusion tensor cardiac magnetic resonance imaging to measure myocardial disarray in patients with hypertrophic cardiomyopathy

Dr Rina Ariga
(Radcliffe Department of Medicine University of Oxford)
Abstract

Sudden cardiac death is the most feared complication of Hypertrophic Cardiomyopathy. This inherited heart muscle disease affects 1 in 500 people. But we are poor at identifying those who really need a potentially life-saving implantable cardioverter-defibrillator. Measuring the abnormalities believed to trigger fatal ventricular arrhythmias could guide treatment. Myocardial disarray is the hallmark feature of patients who die suddenly but is currently a post mortem finding. Through recent advances, the microstructure of the myocardium can now be examined by mapping the preferential diffusion of water molecules along fibres using Diffusion Tensor Cardiac Magnetic Resonance imaging. Fractional anisotropy calculated from the diffusion tensor, quantifies the directionality of diffusion.  Here, we show that fractional anisotropy demonstrates normal myocardial architecture and provides a novel imaging biomarker of the underlying substrate in hypertrophic cardiomyopathy which relates to ventricular arrhythmia.

 

Fri, 28 Feb 2020

14:00 - 15:00
L6

TBA

Fri, 28 Feb 2020

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Oliver Bond, Ana Osojnik, Scott Marquis, John Fitzgerald
(Mathematical Institute)