Thu, 27 Oct 2022

14:00 - 15:00
Zoom

Domain decomposition training strategies for physics-informed neural networks [talk hosted by Rutherford Appleton Lab]

Victorita Dolean
(University of Strathclyde)
Abstract

Physics-informed neural networks (PINNs) [2] are a solution method for solving boundary value problems based on differential equations (PDEs). The key idea of PINNs is to incorporate the residual of the PDE as well as boundary conditions into the loss function of the neural network. This provides a simple and mesh-free approach for solving problems relating to PDEs. However, a key limitation of PINNs is their lack of accuracy and efficiency when solving problems with larger domains and more complex, multi-scale solutions. 


In a more recent approach, Finite Basis Physics-Informed Neural Networks (FBPINNs) [1], the authors use ideas from domain decomposition to accelerate the learning process of PINNs and improve their accuracy in this setting. In this talk, we show how Schwarz-like additive, multiplicative, and hybrid iteration methods for training FBPINNs can be developed. Furthermore, we will present numerical experiments on the influence on convergence and accuracy of these different variants. 

This is joint work with Alexander Heinlein (Delft) and Benjamin Moseley (Oxford).


References 
1.    [1]  B. Moseley, A. Markham, and T. Nissen-Meyer. Finite basis physics- informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations. arXiv:2107.07871, 2021. 
2.    [2]  M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

Thu, 27 Oct 2022

13:00 - 14:00
N3.12

Mathematrix: Support in the Maths Institute

Abstract

We will be joined by Charlotte Turner-Smith to discuss issues surrounding harassment and mental health, and how the department is helping to tackle these.

Thu, 27 Oct 2022

12:00 - 13:00
L1

Swimming in complex fluids

Prof. Saverio Spagnolie
(University of Wisconsin - Madison)
Further Information
Saverio Spagnolie is a professor of mathematics at the University of Wisconsin-Madison, with a courtesy appointment in chemical and biological engineering. His research focuses on problems in biological propulsion and soft matter, complex fluids, and numerical methods, and he is the director of the AMEP Lab (Applied Math, Engineering and Physics Lab). Prior to his post in Madison, Saverio received a Ph.D. in mathematics at the Courant Institute then held postdoctoral positions in engineering at UCSD and at Brown.
Abstract

Many microorganisms must navigate strange biological environments whose physics are unique and counter-intuitive, with wide-ranging consequences for evolutionary biology and human health. Mucus, for instance, behaves like both a fluid and an elastic solid. This can affect locomotion dramatically, which can be highly beneficial (e.g. for mammalian spermatozoa swimming through cervical fluid) or extremely problematic (e.g. the Lyme disease spirochete B. burgdorferi swimming through the extracellular matrix of human skin). Mathematical modeling and numerical simulations continue to provide new fundamental insights about the biological world in and around us and point toward new possibilities in biomedical engineering. These complex fluid phenomena can either enhance or retard a microorganism's swimming speed, and can even change the direction of swimming, depending on the body geometry and the properties of the fluid. We will discuss analytical and numerical insights into swimming through model viscoelastic (Oldroyd-B) and liquid-crystalline (Ericksen-Leslie) fluids, with a special focus on the important and in some cases dominant roles played by the presence of nearby boundaries.

Wed, 26 Oct 2022
16:00
L4

$\ell^2$ and profinite invariants

Ismael Morales
(University of Oxford)
Abstract

We review a few instances in which the first $\ell^2$ Betti number of a group is a profinite invariant and we discuss some applications and open problems.

Tue, 25 Oct 2022

17:00 - 18:00
Virtual

A tale of two balloons

Yinon Spinka
(UBC)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

From each point of a Poisson point process start growing a balloon at rate 1. When two balloons touch, they pop and disappear. Will balloons reach the origin infinitely often or not? We answer this question for various underlying spaces. En route we find a new(ish) 0-1 law, and generalize bounds on independent sets that are factors of IID on trees. Joint work with Omer Angel and Gourab Ray.

Tue, 25 Oct 2022
16:00
C1

Chaotic tracial dynamics

Bhishan Jacelon
(Czech Academy of Sciences)
Abstract

The classification by K-theory and traces of the category of simple, separable, nuclear, Z-stable C*-algebras satisfying the UCT is an extraordinary feat of mathematics. What's more, it provides powerful machinery for the analysis of the internal structure of these regular C*-algebras. In this talk, I will explain one such application of classification: In the subclass of classifiable C*-algebras consisting of those for which the simplex of tracial states is nonempty, with extremal boundary that is compact and has the structure of a connected topological manifold, automorphisms can be shown to be generically tracially chaotic. Using similar ideas, I will also show how certain stably projectionless C*-algebras can be described as crossed products.

Tue, 25 Oct 2022

15:30 - 16:30
Virtual

Average degree and girth

Rose McCarty
(Princeton University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In 1983 Thomassen conjectured that every graph of sufficiently large average degree has a subgraph of large girth and large average degree. While this conjecture remains open, recent evidence suggests that something stronger might be true; perhaps the subgraph can be made induced when a clique and biclique are forbidden. We overview our proof for removing 4-cycles from $K_{t,t}$-free bipartite graphs. Moreover, we discuss consequences to tau-boundedness, which is an analog of chi-boundedness.

Tue, 25 Oct 2022

15:30 - 16:30
L6

On the asymptotic analysis of the Calogero-Painlevé systems and the Tracy-Widom$_\beta$ distribution for $\beta$=6

Alexander Its
(Indiana-Purde University)
Further Information

Seminar Cancelled

Abstract

The Calogero-Painlevé systems were introduced in 2001 by K. Takasaki as a natural generalization of the classical Painlevé equations to the case of the several Painlevé “particles” coupled via the Calogero type interactions. In 2014, I. Rumanov discovered a remarkable fact that a particular case of the Calogero– Painlevé II equation describes the Tracy-Widom distribution function for the general $\beta$-ensembles with the even values of parameter $\beta$. in 2017 work of M. Bertola, M. Cafasso , and V. Rubtsov, it was proven that all Calogero-Painlevé systems are Lax integrable, and hence their solutions admit a Riemann-Hilbert representation. This important observation has opened the door to rigorous asymptotic analysis of the Calogero-Painlevé equations which in turn yields the possibility of rigorous evaluation of the asymptotic behavior of the Tracy-Widom distributions for the values of $\beta$ beyond the classical $\beta =1, 2, 4$. In the talk these recent developments will be outlined with a special focus on the Calogero-Painlevé system corresponding to $\beta = 6$. This is a joint work with Andrei Prokhorov.

Tue, 25 Oct 2022
15:00
L5

Rational curvature invariants of 2-dimensional complexes

Henry Wilton
Abstract

I will discuss some new invariants of 2-complexes. They are inspired by recent developments in the theory of one-relator groups, but also have the potential to unify the theories of many well-studied families including small-cancellation presentation complexes, CAT(0) 2-complexes and 3-manifold spines, in addition to the motivating examples of one-relator presentation complexes. The fundamental result is that these invariants are the extrema of explicit linear-programming problems, and in particular are rational, computable and realised. The definitions suggest a conjectural “map” of 2-complexes, which I will attempt to describe.
 

Tue, 25 Oct 2022

14:30 - 15:00
L3

Some recent developments in high order finite element methods for incompressible flow

Charles Parker
(Mathematical Institute University of Oxford)
Abstract
Over the past 30-40 years, high order finite element methods (FEMs) have gained significant traction. While much of the theory and implementation of high order continuous FEMs are well-understood, FEMs with increased smoothness are less popular in the literature and in practice. Nevertheless, engineering problems involving plates and shells give rise to fourth order elliptic equations, whose conforming approximations typically entail the Argyris elements, which are globally C1 and C2 at element vertices. The Argyris elements and their high order counterparts can then be used to construct the mass-conserving Falk-Neilan elements for incompressible flow problems. In particular, the Falk-Neilan elements inherit a level of extra smoothness at element vertices. In this talk, we will give a brief overview of some recent developments concerning the uniform hp-stability and preconditioning of the Falk-Neilan elements.
Tue, 25 Oct 2022
14:00
C3

Nonbacktracking spectral clustering of nonuniform hypergraphs

Dr. Phil Chodrow
(Department of Computer Science, Middlebury College)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Abstract

Spectral methods offer a tractable, global framework for clustering in graphs via eigenvector computations on graph matrices. Hypergraph data, in which entities interact on edges of arbitrary size, poses challenges for matrix representations and therefore for spectral clustering. We study spectral clustering for arbitrary hypergraphs based on the hypergraph nonbacktracking operator. After reviewing the definition of this operator and its basic properties, we prove a theorem of Ihara-Bass type which allows eigenpair computations to take place on a smaller matrix, often enabling faster computation. We then propose an alternating algorithm for inference in a hypergraph stochastic blockmodel via linearized belief-propagation which involves a spectral clustering step, again using nonbacktracking operators. We provide proofs related to this algorithm that both formalize and extend several previous results. We pose several conjectures about the limits of spectral methods and detectability in hypergraph stochastic blockmodels in general, supporting these with in-expectation analysis of the eigeinpairs of our studied operators. We perform experiments with real and synthetic data that demonstrate the benefits of hypergraph methods over graph-based ones when interactions of different sizes carry different information about cluster structure.

Joint work with Nicole Eikmeier (Grinnell) and Jamie Haddock (Harvey Mudd).

Tue, 25 Oct 2022
14:00
L6

Sums of squares in group algebras and vanishing of cohomology

Piotr Nowak
(Institute of Mathematics - Polish Academy of Sciences)
Abstract

I will discuss algebraic conditions that for a given group guarantee or characterize the vanishing of cohomology in a given degree with coefficients in any unitary representation. These conditions will be expressed in terms positivity of certain elements over group algebras, where positivity is meant as being a sum of hermitian squares. I will explain how conditions like this can be used to give computer-assisted proofs of vanishing of cohomology. 

Mon, 24 Oct 2022
16:00
L6

Recasting Selmer Schemes

Jay Swar
Abstract

The Chabauty-Kim method is an effective algorithm for finding the $S$-integral points of hyperbolic curves by directly using the hyperbolicity in group-cohomological arguments. Central objects in the theory are affine spaces known as a Selmer schemes. We'll introduce the CK method and Selmer schemes, and demonstrate some additional structures possessed by Selmer schemes which can aid in implementing the CK method.
 

Mon, 24 Oct 2022
15:30
L5

Simple homotopy types of 4-manifolds

John Nicholson
Abstract

Two CW-complexes are simple homotopy equivalent if they are related by a sequence of collapses and expansions of cells. It implies homotopy equivalent as is implied by homeomorphic. This notion proved extremely useful in manifold topology and is central to the classification of non-simply connected manifolds up to homeomorphism. I will present the first examples of two 4-manifolds which are homotopy equivalent but not simple homotopy equivalent, as well as in all higher even dimensions. The examples are constructed using surgery theory and the s-cobordism theorem, and are distinguished using methods from algebraic number theory and algebraic K-theory. I will also discuss a number of new directions including progress on classifying the possible fundamental groups for which examples exist. This is joint work with Csaba Nagy and Mark Powell.

Mon, 24 Oct 2022

15:30 - 16:30
L1

Edwards-Wilkinson fluctuations for the Anisotropic KPZ in the weak coupling regime

Giuseppe Cannizzaro
Abstract

In this talk, we present recent results on an anisotropic variant of the Kardar-Parisi-Zhang equation, the Anisotropic KPZ equation (AKPZ), in the critical spatial dimension d=2. This is a singular SPDE which is conjectured to capture the behaviour of the fluctuations of a large family of random surface growth phenomena but whose analysis falls outside of the scope not only of classical stochastic calculus but also of the theory of Regularity Structures and paracontrolled calculus. We first consider a regularised version of the AKPZ equation which preserves the invariant measure and prove the conjecture made in [Cannizzaro, Erhard, Toninelli, "The AKPZ equation at stationarity: logarithmic superdiffusivity"], i.e. we show that, at large scales, the correlation length grows like t1/2 (log t)1/4 up to lower order correction. Second, we prove that in the so-called weak coupling regime, i.e. the equation regularised at scale N and the coefficient of the nonlinearity tuned down by a factor (log N)-1/2, the AKPZ equation converges to a linear stochastic heat equation with renormalised coefficients. Time allowing, we will comment on how some of the techniques introduced can be applied to other SPDEs and physical systems at and above criticality. 

Mon, 24 Oct 2022
14:15
L5

Hitchin representations and minimal surfaces in symmetric spaces

Nathaniel Sagman
(University of Luxembourg)
Abstract

Labourie proved that every Hitchin representation into PSL(n,R) gives rise to an equivariant minimal surface in the corresponding symmetric space. He conjectured that uniqueness holds as well (this was known for n=2,3), and explained that if true, then the Hitchin component admits a mapping class group equivariant parametrization as a holomorphic vector bundle over Teichmüller space.

In this talk, we will define Hitchin representations, Higgs bundles, and minimal surfaces, and give the background for the Labourie conjecture. We will then explain that the conjecture fails for n at least 4, and point to some future questions and conjectures.

Mon, 24 Oct 2022

14:00 - 15:30
L3

Going All Round the Houses: Mathematics, Horoscopes and History before 1600

Stephen Johnston
(History of Science Museum, Oxford)
Abstract

To be a mathematicus in 15th- and 16th-century Europe often meant practising as an astrologer. Far from being an unwelcome obligation, or simply a means of paying the rent, astrology frequently represented a genuine form of mathematical engagement. This is most clearly seen by examining changing definitions of one of the key elements of horoscope construction: the astrological houses. These twelve houses are divisions of the zodiac circle and their character fundamentally affects the significance of the planets which occupy them at any particular moment in time. While there were a number of competing systems for defining the houses, one system was standard throughout medieval Europe. However, the 16th-century witnessed what John North referred to as a “minor revolution”, as a different technique first developed in the Islamic world but adopted and promoted by Johannes Regiomontanus became increasingly prevalent. My paper reviews this shift in astrological practice and investigates the mathematical values it represents – from aesthetics and geometrical representation to efficiency and computational convenience.

Mon, 24 Oct 2022
13:00
L1

Decomposition and condensation defects in 3d

Ling Lin
(Oxford)
Abstract

Quantum field theories (QFTs) in d dimensions that posses a (d-1)-form symmetry are conjectured to decompose into disjoint “universes”, each of which is itself a (local and unitary) QFT. I will give an overview of our current understanding of decomposition, and then discuss how this phenomenon occurs in the fusion of condensation defects of certain 3d QFTs. This gives a “microscopic” explanation of why in these instances, the fusion coefficient can be taken as an integer rather than a general TQFT.

Fri, 21 Oct 2022
16:00
C1

Selected aspects of the dynamical Kirchberg-Phillips theorem

Gabor Szabo
(KU Leuven)
Abstract

 I will start this talk with a brief introduction and summary of the outcome of a joint work with James Gabe. An important special case of the main result is that for any countable discrete amenable group G, any two outer G-actions on stable Kirchberg algebras are cocycle conjugate precisely when they are equivariantly KK-equivalent. In the main body of the talk, I will outline the key arguments toward a special case of the 'uniqueness theorem', which is one of the fundamental ingredients in our theory: Suppose we have two G-actions on A and B such that B is a stable Kirchberg algebra and the action on B is outer and equivariantly O_2-absorbing. Then any two cocycle embeddings from A to B are approximately unitarily equivalent. If time permits, I will provide a (very rough) sketch of how this leads to the dynamical O_2-embedding theorem, which implies that such cocycle embeddings always exist in the first place.

Fri, 21 Oct 2022

16:00 - 17:00
L1

Maintaining your mental fitness as a graduate student or postdoc

Rebecca Reed and Ian Griffiths
Abstract

Academic research can be challenging and can bring with it difficulties in maintaining good mental health. This session will be led by Rebecca Reed, Mental Health First Aid (MHFA) Instructor, Meditation & Yoga Teacher and Personal Development Coach and owner of wellbeing company Siendo. Rebecca will talk about how we can maintain good mental fitness, recognizing good practices to ensure we avoid mental-health difficulties before they begin. We have deliberately set this session to be at the beginning of the academic year in this spirit. We will also talk about maintaining good mental health specifically in the academic community.   

Fri, 21 Oct 2022

15:00 - 16:00
L5

Kan Extensions and Kan Ensembles in Machine Learning

Dan Shiebler
(Abnormal Security)
Further Information

Right now Dan works as the Head of Machine Learning at Abnormal Security. Previously. He led the Web Ads Machine Learning team at Twitter. Before that he worked as a Staff ML Engineer at Twitter Cortex and a Senior Data Scientist at TrueMotion.

His PhD research at the University of Oxford focused on applications of Category Theory to Machine Learning (advised by Jeremy Gibbons and Cezar Ionescu). Before that he worked as a Computer Vision Researcher at the Serre Lab.

 

You can find out more about Dan here: https://danshiebler.com/ 

Abstract

A common problem in data science is "use this function defined over this small set to generate predictions over that larger set." Extrapolation, interpolation, statistical inference and forecasting all reduce to this problem. The Kan extension is a powerful tool in category theory that generalizes this notion. In this work we explore several applications of Kan extensions to data science. We begin by deriving simple classification and clustering algorithms as Kan extensions and experimenting with these algorithms on real data. Next, we build more complex and resilient algorithms from these simple parts.

Fri, 21 Oct 2022

14:00 - 15:00
L6

Module categories for $\text{Tilt}(SL_{2k+1})$ from $\tilde{A}_{n-1}$-buildings

Emily McGovern
(North Carolina State University)
Further Information

We will be streaming this seminar in L6 but feel free to join online.

Abstract

We show that the category of vector bundles over the vertices of a locally finite $\tilde{A}_{n-1}$ building $\Delta$, $Vec(\Delta)$, has the structure of a $Tilt(SL_{2k+1})$ module category. This module category is the $q$-analogue of the $Tilt(SL_{2k+1})$ action on vector bundles over the $sl_n$ weight lattice.  Our construction of the $Tilt(SL_{2k+1})$ action on $Vec(\Delta)$ extends to $Vec(\Delta)^{G}$, its equivariantization, which gives us a class of non-standard $Tilt(SL_{2k+1})$ module categories. When $G$ acts simply transitively, this recovers the fiber functors of Jones.