Tue, 05 Feb 2019

12:00 - 13:00
C4

Nonparametric inference of atomic network structures

Anatol Wegner
(University College London)
Abstract

Many real-world networks contain small recurring connectivity patterns also known as network motifs. Although network motifs are widely considered to be important structural features of networks that are closely connected to their function methods for characterizing and modelling the local connectivity structure of complex networks remain underdeveloped. In this talk, we will present a non-parametric approach that is based on generative models in which networks are generated by adding not only single edges but also but also copies of larger subgraphs such as triangles to the graph. We show that such models can be formulated in terms of latent states that correspond to subgraph decompositions of the network and derive analytic expressions for the likelihood of such models. Following a Bayesian approach, we present a nonparametric prior for model parameters. Solving the resulting inference problem results in a principled approach for identifying atomic connectivity patterns of networks that do not only identify statistically significant connectivity patterns but also produces a decomposition of the network into such atomic substructures. We tested the presented approach on simulated data for which the algorithm recovers the latent state to a high degree of accuracy. In the case of empirical networks, the method identifies concise sets atomic subgraphs from within thousands of candidates that are plausible and include known atomic substructures.

Mon, 04 Feb 2019

16:00 - 17:00
L4

Ginzburg–Landau functionals with a general compact vacuum manifold on planar domains

Jean Van Schaftingen
(Universite catholique de louvain)
Abstract

Ginzburg–Landau type functionals provide a relaxation scheme to construct harmonic maps in the presence of topological obstructions. They arise in superconductivity models, in liquid crystal models (Landau–de Gennes functional) and in the generation of cross-fields in meshing. For a general compact manifold target space we describe the asymptotic number, type and location of singularities that arise in minimizers. We cover in particular the case where the fundamental group of the vacuum manifold in nonabelian and hence the singularities cannot be characterized univocally as elements of the fundamental group. The results unify the existing theory and cover new situations and problems.

This is a joint work with Antonin Monteil and Rémy Rodiac (UCLouvain, Louvain- la-Neuve, Belgium)

Mon, 04 Feb 2019
15:45
L6

Slice discs in stabilized 4-balls

Matthias Nagel
(Oxford)
Abstract


We recall the impact of stabilizing a 4-manifold with $S^2 \times S^2$. The corresponding local situation concerns knots in the 3-sphere which bound (nullhomotopic) discs in a stabilized 4-ball. We explain how these discs arise, and discuss bounds on the minimal number of stabilizations needed. Then we compare this minimal number to the 4-genus.
This is joint work with A. Conway.

Mon, 04 Feb 2019

15:45 - 16:45
L3

The parabolic Anderson model in 2 d, mass- and eigenvalue asymptotics

WILLEM VAN ZUIJLEN
(WIAS Berlin)
Abstract


In this talk I present work in progress with Wolfgang König and Nicolas Perkowski on the parabolic Anderson model (PAM) with white noise potential in 2d. We show the behavior of the total mass as the time tends to infinity. By using partial Girsanov transform and singular heat kernel estimates we can obtain the mass-asymptotics by using the eigenvalue asymptotics that have been showed in another work in progress with Khalil Chouk. 

Mon, 04 Feb 2019

14:15 - 15:15
L3

Space-time localisation for the dynamic $\Phi^4_3$ model

HENDRIK WEBER
(University of Bath)
Abstract

We prove an a priori bound for solutions of the dynamic $\Phi^4_3$ equation.

This bound provides a control on solutions on a compact space-time set only in terms of the realisation of the noise on an enlargement of this set, and it does not depend on any choice of space-time boundary conditions.

We treat the  large and small scale behaviour of solutions with completely different arguments.For small scales we use bounds akin to those presented in Hairer's theory of regularity structures. We stress immediately that our proof is fully self-contained, but we give a detailed explanation of how our arguments relate to Hairer's. For large scales we use a PDE argument based on the maximum principle. Both regimes are connected by a solution-dependent regularisation procedure.

The fact that our bounds do not depend on space-time boundary conditions makes them useful for the analysis of large scale properties of solutions. They can for example be used in a compactness argument to construct solutions on the full space and their invariant measures

Mon, 04 Feb 2019
14:15
L4

Gluing methods for Vortex dynamics in Euler flows

Manuel del Pino
(Bath University)
Abstract

We consider the two-dimensional Euler flow for an incompressible fluid confined to a smooth domain. We construct smooth solutions with concentrated vorticities around $k$ points which evolve according to the Hamiltonian system for the Kirkhoff-Routh energy,  using an outer-inner solution gluing approach. The asymptotically singular profile  around each point resembles a scaled finite mass solution of Liouville's equation.
We also discuss the {\em vortex filament conjecture} for the three-dimensional case. This is joint work with Juan D\'avila, Monica Musso and Juncheng Wei.

 

Mon, 04 Feb 2019

13:00 - 14:00
N3.12

Mathematrix - Meet Vicky Neale

Further Information

Sharing her academic path and experience with teaching and outreach

Mon, 04 Feb 2019
12:45
L5

Large-N Non-Supersymmetric 6D CFTs: Hologram or Mirage?

Fabio Abruzzi
(Oxford)
Abstract

In this talk I will present a large class of non-supersymmetric AdS7 solutions of IIA supergravity, and their (in)stabilities. I will start by reviewing supersymmetric AdS7 solutions of 10D supergravity dual to 6D (1,0) SCFTs. I will then focus on their non-supersymmetric counterpart, discussing how they are related. The connection between supersymmetric and non-supersymmetric solutions leads to a hint for the SUSY breaking mechanism, which potentially allows to evade some of the assumptions of the Ooguri-Vafa Conjecture about the AdS landscape. A big subset of these solutions shows a curious pattern of perturbative instabilities whenever many open-string modes are considered. On the other hand an infinite class remains apparently stable.

Fri, 01 Feb 2019

14:00 - 15:00
L1

What are employers looking for in Mathematical graduates?

Erica Tyson
Further Information

IMA Careers Workshop

Abstract

Would you employ you? What are employers looking for in Mathematical graduates? What kind of work can use your skills? This workshop will get your minds thinking about the possibilities after you have finished studying and will cover:

·         General careers’ information starting from a mathematical sciences degree

·         Things to think about at CV and interview stage

·         How membership of a professional body (the IMA) supports your applications and career development.

·         Information about the Mathematics Teacher Training Scholarships

Thu, 31 Jan 2019
17:00
L5

Z + PROVI

A.R.D. Mathias
(Université de la Réunion)
Abstract

Here Z is Zermelo’s set theory of 1908, as later formulated: full separation, but no replacement or collection among its axioms. PROVI was presented in lectures in Cambridge in 2010 and later published with improvements by Nathan Bowler, and is, I claim, the weakest subsystem of ZF to support a recognisable theory of set forcing: PROV is PROVI shorn of its axiom of infinity. The provident sets are the transitive non-empty models of PROV. The talk will begin with a presentation of PROV, and then discuss more recent applications and problems: in particular an answer in the system Z + PROV to a question posed by Eugene Wesley in 1972 will be sketched, and two proofs (fallacious, I hope) of 0 = 1 will be given, one using my slim models of Z and the other applying the Spector–Gandy theorem to certain models of PROVI. These “proofs”, when re-interpreted, supply some arguments of Reverse Mathematics.

Thu, 31 Jan 2019

16:00 - 17:00
L6

Is a random polynomial irreducible?

Dimitris Koukoulopoulos
(Université de Montréal)
Abstract

Given a "random" polynomial over the integers, it is expected that, with high probability, it is irreducible and has a big Galois group over the rationals. Such results have been long known when the degree is bounded and the coefficients are chosen uniformly at random from some interval, but the case of bounded coefficients and unbounded degree remained open. Very recently, Emmanuel Breuillard and Peter Varju settled the case of bounded coefficients conditionally on the Riemann Hypothesis for certain Dedekind zeta functions. In this talk, I will present unconditional progress towards this problem, joint with Lior Bary-Soroker and Gady Kozma.

Thu, 31 Jan 2019

16:00 - 17:30
L3

Poroelastic propagation and pancakes: understanding why supraglacial lakes spread but Venutian lava domes stop

Dr. Jerome Neufeld
(University of Cambridge)
Abstract

Many fluid flows in natural systems are highly complex, with an often beguilingly intricate and confusing detailed structure. Yet, as with many systems, a good deal of insight can be gained by testing the consequences of simple mathematical models that capture the essential physics.  We’ll tour two such problems.  In the summer melt seasons in Greenland, lakes form on the surface of the ice which have been observed to rapidly drain.  The propagation of the meltwater in the subsurface couples the elastic deformation of the ice and, crucially, the flow of water within the deformable subglacial till.  In this case the poroelastic deformation of the till plays a subtle, but crucial, role in routing the surface meltwater which spreads indefinitely, and has implications for how we think about large-scale motion in groundwater aquifers or geological carbon storage.  In contrast, when magma erupts onto the Earth’s surface it flows before rapidly cooling and crystallising.  Using analogies from the kitchen we construct, and experimentally test, a simple model of what sets the ultimate extent of magmatic intrusions on Earth and, as it turns out, on Venus.  The results are delicious!  In both these cases, we see how a simplified mathematical analysis provides insight into large scale phenomena.

Thu, 31 Jan 2019

16:00 - 17:30
L4

Machine learning for volatility

Dr Martin Tegner
(Department of Engineering and Oxford Man Institute)
Further Information

The main focus of this talk will be a nonparametric approach for local volatility. We look at the calibration problem in a probabilistic framework based on Gaussian process priors. This gives a way of encoding prior believes about the local volatility function and a model which is flexible yet not prone to overfitting. Besides providing a method for calibrating a (range of) point-estimate(s), we draw posterior inference from the distribution over local volatility. This leads to a principled understanding of uncertainty attached with the calibration. Further, we seek to infer dynamical properties of local volatility by augmenting the input space with a time dimension. Ideally, this provides predictive distributions not only locally, but also for entire surfaces forward in time. We apply our approach to S&P 500 market data.

 

In the final part of the talk we will give a short account of a nonparametric approach to modelling realised volatility. Again we take a probabilistic view and formulate a hypothesis space of stationary processes for volatility based on Gaussian processes. We demonstrate on the S&P 500 index.

Thu, 31 Jan 2019
16:00
C4

Holonomic D-modules, b-functions, and coadmissibility

Andreas Bode
(Oxford University)
Abstract

Since differentiation generally lowers exponents, it is straightforward that the space of Laurent polynomials $\mathbb{C}[x, x^{-1}]$ is a finitely generated module over the ring of differential operators $\mathbb{C}[x, \mathrm{d}/\mathrm{d}x]$. This innocent looking fact has been vastly generalized to a statement about holonomic D-modules, using the beautiful theory of b-functions (or Bernstein—Sato polynomials). I will give an overview of the classical theory before discussing some recent developments concerning a $p$-adic analytic analogue, which is joint work with Thomas Bitoun.

Thu, 31 Jan 2019

14:00 - 15:00
L4

Inexact Ideas

Prof Trond Steihaug
(University of Bergen)
Abstract

When the linear system in Newton’s method is approximately solved using an iterative method we have an inexact or truncated Newton method. The outer method is Newton’s method and the inner iterations will be the iterative method. The Inexact Newton framework is now close to 30 years old and is widely used and given names like Newton-Arnoldi, Newton-CG depending on the inner iterative method. In this talk we will explore convergence properties when the outer iterative method is Gauss-Newton, the Halley method or an interior point method for linear programming problems.

Thu, 31 Jan 2019
12:00
L4

Path-by-path well-posedness of stochastic nonlinear diffusion equations

Benjamin Fehrman
(University of Oxford)
Abstract

In this talk, which is based on joint work with Benjamin Gess, I will describe a pathwise well-posedness theory for stochastic porous media and fast diffusion equations driven by nonlinear, conservative noise. Such equations arise in the theory of mean field games, as an approximation to the Dean–Kawasaki equation in fluctuating hydrodynamics, to describe the fluctuating hydrodynamics of a zero range process, and as a model for the evolution of a thin film in the regime of negligible surface tension.  Our methods are motivated by the theory of stochastic viscosity solutions, which are applied after passing to the equation’s kinetic formulation, for which the noise enters linearly and can be inverted using the theory of rough paths.  I will also mention the application of these methods to nonlinear diffusion equations with linear, multiplicative noise.

Wed, 30 Jan 2019
16:00
C1

Residual properties of graphs of p-groups

Gareth Wilkes
(Cambridge University)
Abstract

When groups may be built up as graphs of 'simpler' groups, it is often 
of interest to study how good residual finiteness properties of simpler 
groups can imply residual properties of the whole. The essential case of 
this theory is the study of residual properties of finite groups. In 
this talk I will discuss the question of when a graph of finite 
$p$-groups is residually $p$-finite, for $p$ a prime. I describe the 
previous theorems in this area for one-edge and finite graphs of groups, 
and their method of proof. I will then state my recent generalisation of 
these theorems to potentially infinite graphs of groups, together with 
an alternative and more natural method of proof. Finally I will briefly 
describe a usage of these results in the study of accessibility -- 
namely the existence of a finitely generated inaccessible group which is 
residually $p$-finite.

Wed, 30 Jan 2019
15:00
L4

Wave: A New Family of Trapdoor Preimage Sampleable Functions Based on Codes

Thomas Debris-Alazard
(INRIA Paris)
Further Information

It is a long-standing open problem to build an efficient and secure digital signature scheme based on the hardness of decoding a linear code which could compete with widespread schemes like DSA or RSA. The latter signature schemes are broken by a quantum computer with Shor’s algorithm. Code-based schemes could provide a valid quantum resistant replacement. We present here Wave the first « hash-and-sign » code-based signature scheme which strictly follows the GPV strategy which ensures universal unforgeability. It uses the family of ternary generalized $(U, U+V)$ codes. Our algorithm produces uniformly distributed signatures through a suitable rejection sampling (one rejection every 3 or 4 signatures). Furthermore, our scheme enjoys efficient signature and verification algorithms. Typically, for 128 bits of classical security, signatures are in the order of 10 thousand bits long and the public key is in the order of one megabyte.​

Tue, 29 Jan 2019

14:30 - 15:00
L3

Nearby preconditioning for multiple realisations of the Helmholtz equation, with application to uncertainty quantification

Owen Pembery
(Bath)
Abstract

The Helmholtz equation models waves propagating with a fixed frequency. Discretising the Helmholtz equation for high frequencies via standard finite-elements results in linear systems that are large, non-Hermitian, and indefinite. Therefore, when solving these linear systems, one uses preconditioned iterative methods. When one considers uncertainty quantification for the Helmholtz equation, one will typically need to solve many (thousands) of linear systems corresponding to different realisations of the coefficients. At face value, this will require the computation of many preconditioners, a potentially expensive task.

Therefore, we investigate how well a preconditioner for one realisation of the Helmholtz equation works as a preconditioner for another realisation. We prove that if the two realisations are 'nearby' (with a precise meaning of 'nearby'), then the preconditioner is robust (that is, preconditioned GMRES converges in a number of iterations that is independent of frequency). We also give some preliminary computational results indicating the speedup one obtains in uncertainty quantification calculations.

Tue, 29 Jan 2019

14:30 - 15:30
L6

Efficient sampling of random colorings

Guillem Perarnau
Abstract

A well-known conjecture in computer science and statistical physics is that Glauber dynamics on the set of k-colorings of a graph G on n vertices with maximum degree \Delta is rapidly mixing for k \ge \Delta+2. In 1999, Vigoda showed rapid mixing of flip dynamics with certain flip parameters on the set of proper k-colorings for k > (11/6)\Delta, implying rapid mixing for Glauber dynamics. In this paper, we obtain the first improvement beyond the (11/6)\Delta barrier for general graphs by showing rapid mixing for k > (11/6 - \eta)\Delta for some positive constant \eta. The key to our proof is combining path coupling with a new kind of metric that incorporates a count of the extremal configurations of the chain. Additionally, our results extend to list coloring, a widely studied generalization of coloring. Combined, these results answer two open questions from Frieze and Vigoda’s 2007 survey paper on Glauber dynamics for colorings. 


This is joint work with Michelle Delcourt and Luke Postle.

 
Tue, 29 Jan 2019

14:00 - 14:30
L3

Dimensionality reduction for linear least square problems

Zhen Shao
(Oxford)
Abstract

The focus of this talk is how to tackle huge linear least square problems via sketching, a dimensionality reduction technique from randomised numerical linear algebra. The technique allows us to project the huge problem to a smaller dimension that captures essential information of the original problem. We can then solve the projected problem directly to obtain a low accuracy solution or using the projected problem to construct a preconditioner for the original problem to obtain a high accuracy solution. I will survey the existing projection techniques and evaluate the performance of sketching for linear least square problems by comparing it to the state-of-the-art traditional solution methods. More than ten-fold speed-up has been observed in some cases.

Tue, 29 Jan 2019

12:00 - 13:00
C4

FORTEC - Using Networks and Agent-Based Modelling to Forecast the Development of Artificial Intelligence Over Time

Kieran Marray
(University of Oxford)
Abstract

There have been two main attempts so far to forecast the level of development of artificial intelligence (or ‘computerisation’) over time, Frey and Osborne (2013, 2017) and Manyika et al (2017). Unfortunately, their methodology seems to be flawed. Their results depend upon expert predictions of which occupations will be automatable in 2050, but these predictions are notoriously unreliable. Therefore, we develop an alternative which does not depend upon these expert predictions. We build a dataset of all the start-ups, firms, and university research laboratories working on automating different types of tasks, and use this to build a dynamic network model of them and how they interact. How automatable each type of task is ‘emerges’ from the model. We validate it, predicting the level of development of supervised learning in 2017 using data from the year 2000, and use it to forecast of the automatability of each of these task types from 2018 to 2050. Finally, we discuss extensions for our model; how it could be used to test the impact of public policy decisions or forecast developments in other high-technology industries.

Tue, 29 Jan 2019

12:00 - 13:15
L4

Using Bose-Einstein condensates to explore scales where quantum physics and general relativity overlap

Ivette Fuentes
(University of Nottingham)
Abstract

Progress in developing a consistent theory that describes physical phenomena
at scales where quantum and general relativistic effects are large is
hindered by the lack of experiments. In this talk, we present a proposal
that would overcome this experimental obstacle by using a Bose-Einstein
condensate (BEC) to test for possible conflicts between quantum theory and
general relativity. Recent developments in large BEC systems allows us to
verify if gravitationally-induced wave function collapse occurs at the
timescales predicted by Roger Penrose. BECs with high particle numbers
(N>10^9) can also be used to demonstrate quantum field theory in curved
spacetime by observing how changes in the spacetime affect the phononic
quantum field of a BEC. These effects will enable the development of a new
generation of instruments that will be able to probe scales where new
physics might emerge, with applications including gravitational wave
detectors, gravimeters, gradiometers and dark energy probes.

Mon, 28 Jan 2019
15:45
L6

Transfers and traces in the algebraic K-theory of spaces

George Raptis
(Regensburg)
Further Information

The algebraic K-theory of a space encodes important invariants of the space which are of interest in both homotopy theory and geometric topology. 

In this talk, I will discuss properties of transfer maps in the algebraic K-theory of spaces ('wrong-way' maps) in connection with index theorems for (smooth or topological) manifold bundles and also compare these maps with other related constructions such as the Becker-Gottlieb transfer and the Waldhausen trace.

Mon, 28 Jan 2019

15:45 - 16:45
L3

A geometric perspective on regularity structures

YOUNESS BOUTAIB
(BERLIN UNIVERSITY)
Abstract

Abstract: We use groupoids to describe a geometric framework which can host a generalisation of Hairer's regularity structures to manifolds. In this setup, Hairer's re-expansionmap (usually denoted \Gamma) is a (direct) connection on a gauge groupoid and can therefore be viewed as a groupoid counterpart of a (local) gauge field. This definitions enables us to make the link between re-expansion maps (direct connections), principal connections and path connections, to understand the flatness of the direct connection in terms of that of the manifold and, finally, to easily build a polynomial regularity structure which we compare to the one given by Driver, Diehl and Dahlquist. (Join work with Sara Azzali, Alessandra Frabetti and Sylvie Paycha).

Mon, 28 Jan 2019

14:15 - 15:15
L3

Recent progress in 2-dimensional quantum Yang-Mills theory

THIERRY LEVY
(Paris)
Abstract

Quantum Yang-Mills theory is an important part of the Standard model built by physicists to describe elementary particles and their interactions. One approach to the mathematical substance of this theory consists in constructing a probability measure on an infinite-dimensional space of connections on a principal bundle over space-time. However, in the physically realistic 4-dimensional situation, the construction of this measure is still an open mathematical problem. The subject of this talk will be the physically less realistic 2-dimensional situation, in which the construction of the measure is possible, and fairly well understood.

In probabilistic terms, the 2-dimensional Yang-Mills measure is the distribution of a stochastic process with values in a compact Lie group (for example the unitary group U(N)) indexed by the set of continuous closed curves with finite length on a compact surface (for example a disk, a sphere or a torus) on which one can measure areas. It can be seen as a Brownian motion (or a Brownian bridge) on the chosen compact Lie group indexed by closed curves, the role of time being played in a sense by area.

In this talk, I will describe the physical context in which the Yang-Mills measure is constructed, and describe it without assuming any prior familiarity with the subject. I will then present a set of results obtained in the last few years by Antoine Dahlqvist, Bruce Driver, Franck Gabriel, Brian Hall, Todd Kemp, James Norris and myself concerning the limit as N tends to infinity of the Yang-Mills measure constructed with the unitary group U(N). 

 

Mon, 28 Jan 2019
14:15
L4

Orientation problems in 7-dimensional gauge theory

Markus Upmeier
(Oxford University)
Abstract

After discussing a general excision technique for constructing canonical orientations for moduli spaces that derive from an elliptic equation, I shall
explain how to carry out this program in the case of G2-instantons and the 7-dimensional real Dirac operator. In many ways our approach can
be regarded as a categorification of the Atiyah-Singer index theorem. (Based on joint work with Dominic Joyce.)

 

Mon, 28 Jan 2019

13:00 - 14:00
N3.12

Mathematrix - Friendly food with Mirzakhani Society

Further Information

This session is open to all women and non-binary students, and joined with Mirzakhani society, the undergraduate mathematics society for women and non-binary students. The topic will be related to women and confidence.

Mon, 28 Jan 2019
12:45
L5

Unveiling the mysteries of the E-string with Calabi-Yau geometry

Yinan Wang
(Oxford)
Abstract

The E-string theory is usually considered as the simplest among 6D (1,0) superconformal field theories. Nonetheless, we still have little information about its spectrum of operators. In this talk, I'm going to describe our recent geometric approach using F-theory compactification on an elliptic Calabi-Yau threefold. The elliptic fibration is non-flat, which means that there are complex surface components in the fiber direction. From the geometry of non-flat fiber, we read out an infinite tower of particle states in the E-string theory. I will also discuss its relevance to 4D standard model building, which is a main motivation of this work.
 

Fri, 25 Jan 2019
16:00
L1

Ethics for mathematicians

Maurice Chiodo
(Cambridge)
Abstract

Teaching ethics to the mathematicians who need it most
For the last 20 years it has become increasingly obvious, and increasingly pressing, that mathematicians should be taught some ethical awareness so as to realise the impact of their work. This extends even to those more highly trained, like graduate students and postdocs. But which mathematicians should we be teaching this to, what should we be teaching them, and how should we do it? In this talk I’ll explore the idea that all mathematicians will, at some stage, be faced with ethical challenges stemming from their work, and yet few are ever told beforehand.
 

Fri, 25 Jan 2019

14:00 - 15:00
L1

Surely there's no ethics in mathematics?

Dr Maurice Chiodo
Abstract

Mathematics is both the language and the instrument that connects our abstract understanding with the physical world, thus knowledge of mathematics quickly translates to substantial knowledge and influence on the way the world works.  But those who have the greatest ability to understand and manipulate the world hold the greatest capacity to do damage and inflict harm.  In this talk I'll explain that yes, there is ethics in mathematics, and that it is up to us as mathematicians to make good ethical choices in order to prevent our work from becoming harmful.

Fri, 25 Jan 2019

14:00 - 15:00
L3

Applied modelling of the human pulmonary system

Professor David Kay
(Dept of Computer Science University of Oxford)
Abstract

In this work we will attempt, via virtual models, to interpret how structure and body positioning impact upon the outcomes of Multi-Breath-Washout tests. 


By extrapolating data from CT images, a virtual reduced dimensional airway/vascualr network will be constructed. Using this network both airway and blood flow profiles will be calculated. These profiles will then be used to model gas transport within the lungs. The models will allow us to investigate the role of airway restriction, body position during testing and washout gas choice have on MBW measures. 
 

Fri, 25 Jan 2019

14:00 - 15:00
C2

Understanding Thermodynamic Theories

Chris Farmer
(University of Oxford)
Abstract

Many scientists, and in particular mathematicians, report difficulty in understanding thermodynamics. So why is thermodynamics so difficult? To attempt an answer, we begin by looking at the components in an exposition of a scientific theory. These include a mathematical core, a motivation for the choice of variables and equations, some historical remarks, some examples and a discussion of how variables, parameters, and functions (such as equations of state) can be inferred from experiments. There are other components too, such as an account of how a theory relates to other theories in the subject.

 

It will be suggested that theories of thermodynamics are hard to understand because (i) many expositions appear to argue from the particular to the general (ii) there are several different thermodynamic theories that have no obvious logical or mathematical equivalence (iii) each theory really is subtle and requires intense study (iv) in most expositions different theories are mixed up, and the different components of a scientific exposition are also mixed up. So, by presenting one theory at a time, and by making clear which component is being discussed, we might reduce the difficulty in understanding any individual thermodynamic theory. The key is perhaps separation of the mathematical core from the physical motivation. It is also useful to realise that a motivation is not generally the same as a proof, and that no theory is actually true.

 

By way of illustration we will attempt expositions of two of the simplest thermodynamic theories – reversible and then irreversible thermodynamics of homogeneous materials – where the mathematical core and the motivation are discussed separately. In conclusion we’ll relate these two simple theories to other, foundational and generalised, thermodynamic theories.

Fri, 25 Jan 2019

12:00 - 13:00
L4

Deep learning on graphs and manifolds: going beyond Euclidean data

Michael Bronstein
(Imperial College London)
Abstract

In the past decade, deep learning methods have achieved unprecedented performance on a broad range of problems in various fields from computer vision to speech recognition. So far research has mainly focused on developing deep learning methods for Euclidean-structured data. However, many important applications have to deal with non-Euclidean structured data, such as graphs and manifolds. Such data are becoming increasingly important in computer graphics and 3D vision, sensor networks, drug design, biomedicine, high energy physics, recommendation systems, and social media analysis. The adoption of deep learning in these fields has been lagging behind until recently, primarily since the non-Euclidean nature of objects dealt with makes the very definition of basic operations used in deep networks rather elusive. In this talk, I will introduce the emerging field of geometric deep learning on graphs and manifolds, overview existing solutions and outline the key difficulties and future research directions. As examples of applications, I will show problems from the domains of computer vision, graphics, high-energy physics, and fake news detection. 

Fri, 25 Jan 2019

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Oliver Sheridan-Methven, Davin Lunz, Ellen Luckins, Victor Wang
(Mathematical Institute)
Fri, 25 Jan 2019

10:00 - 11:00
L5

Coresets for clustering very large datasets

Stephane Chretien
(NPL)
Abstract

Clustering is a very important task in data analytics and is usually addressed using (i) statistical tools based on maximum likelihood estimators for mixture models, (ii) techniques based on network models such as the stochastic block model, or (iii) relaxations of the K-means approach based on semi-definite programming (or even simpler spectral approaches). Statistical approaches of type (i) often suffer from not being solvable with sufficient guarantees, because of the non-convexity of the underlying cost function to optimise. The other two approaches (ii) and (iii) are amenable to convex programming but do not usually scale to large datasets. In the big data setting, one usually needs to resort to data subsampling, a preprocessing stage also known as "coreset selection". We will present this last approach and the problem of selecting a coreset for the special cases of K-means and spectral-type relaxations.

 

Thu, 24 Jan 2019

16:00 - 17:00
L6

Hida families of Drinfeld modular forms

Giovanni Rosso
(University of Cambridge)
Abstract

Seminal work of Hida tells us that if a modular eigenform is ordinary at p then we can always find other eigenforms, of different weights, that are congruent to our given form. Even better, it says that we can find q-expansions with coefficients in p-adic analytic function of the weight variable k that when evaluated at positive integers give the q-expansion of classical eigenforms. His construction of these families uses mainly the geometry of the modular curve and its ordinary locus.
In a joint work with Marc-Hubert Nicole, we obtained similar results for Drinfeld modular forms over function fields. After an extensive introduction to Drinfeld modules, their moduli spaces, and Drinfeld modular forms, we shall explain how to construct Hida families for ordinary Drinfeld modular forms.

Thu, 24 Jan 2019

16:00 - 17:30
L4

Contagion and Systemic Risk in Heterogeneous Financial Networks

Dr Thilo Meyer-Brandis
(University of Munich)
Abstract

 One of the most defining features of modern financial networks is their inherent complex and intertwined structure. In particular the often observed core-periphery structure plays a prominent role. Here we study and quantify the impact that the complexity of networks has on contagion effects and system stability, and our focus is on the channel of default contagion that describes the spread of initial distress via direct balance sheet exposures. We present a general approach describing the financial network by a random graph, where we distinguish vertices (institutions) of different types - for example core/periphery - and let edge probabilities and weights (exposures) depend on the types of both the receiving and the sending vertex. Our main result allows to compute explicitly the systemic damage caused by some initial local shock event, and we derive a complete characterization of resilient respectively non-resilient financial systems in terms of their global statistical characteristics. Due to the random graphs approach these results bear a considerable robustness to local uncertainties and small changes of the network structure over time. Applications of our theory demonstrate that indeed the features captured by our model can have significant impact on system stability; we derive resilience conditions for the global network based on subnetwork conditions only. 

Thu, 24 Jan 2019
16:00
C4

An overview of the SYZ conjecture

Thomas Prince
(Oxford University)
Abstract

The Strominger-Yau-Zaslow (SYZ) conjecture postulates that mirror dual Calabi-Yau manifolds carry dual special Lagrangian fibrations. Within the study of Mirror Symmetry the SYZ conjecture has provided a particularly fruitful point of convergence of ideas from Riemannian, Symplectic, Tropical, and Algebraic geometry over the last twenty years. I will attempt to provide a brief overview of this aspect of Mirror Symmetry.

Thu, 24 Jan 2019

16:00 - 17:00
L3

Instabilities in Blistering

Dr Draga Pihler-Puzović
(University of Manchester)
Abstract

Blisters form when a thin surface layer of a solid body separates/delaminates from the underlying bulk material over a finite, bounded region. It is ubiquitous in a range of industrial applications, e.g. blister test is applied to assess the strength of adhesion between thin elastic films and their solid substrates, and during natural processes, such as formation and spreading of laccoliths or retinal detachment.

We study a special case of blistering, in which a thin elastic membrane is adhered to the substrate by a thin layer of viscous fluid. In this scenario, the expansion of the newly formed blister by fluid injection occurs via a displacement flow, which peels apart the adhered surfaces through a two-way interaction between flow and deformation. If the injected fluid is less viscous than the fluid already occupying the gap, patterns of short and stubby fingers form on the propagating fluid interface in a radial geometry. This process is regulated by membrane compliance, which if increased delays the onset of fingering to higher flow rates and reduces finger amplitude. We find that the morphological features of the fingers are selected in a simple way by the local geometry of the compliant cell. In contrast, the local geometry itself is determined from a complex fluid–solid interaction, particularly in the case of rectangular blisters. Furthermore, changes to the geometry of the channel cross-section in the latter case lead to a rich variety of possible interfacial patterns. Our experiments provide a link between studies of airway reopening, Saffman-Taylor fingering and printer’s instability.   

Thu, 24 Jan 2019

14:00 - 15:00
L4

Bespoke stochastic Galerkin approximation of nearly incompressible elasticity

Prof David Silvester
(Manchester University)
Abstract

We discuss the key role that bespoke linear algebra plays in modelling PDEs with random coefficients using stochastic Galerkin approximation methods. As a specific example, we consider nearly incompressible linear elasticity problems with an uncertain spatially varying Young's modulus. The uncertainty is modelled with a finite set of parameters with prescribed probability distribution.  We introduce a novel three-field mixed variational formulation of the PDE model and and  assess the stability with respect to a weighted norm. The main focus will be  the efficient solution of the associated high-dimensional indefinite linear system of equations. Eigenvalue bounds for the preconditioned system can be  established and shown to be independent of the discretisation parameters and the Poisson ratio.  We also  discuss an associated a posteriori error estimation strategy and assess proxies for the error reduction associated with selected enrichments of the approximation spaces.  We will show by example that these proxies enable the design of efficient  adaptive solution algorithms that terminate when the estimated error falls below a user-prescribed tolerance.

This is joint work with Arbaz Khan and Catherine Powell

Thu, 24 Jan 2019

13:00 - 14:00
L4

Talks by Dphil students

Tanut Treetanthiploet and Julien Vaes (Dphil students)
Abstract

Tanut Treetanthiploet
---------------------
Exploration vs Exploitation under Statistical Uncertainty

The exploration vs Exploitation trade-off can be quantified and studied through the notion of statistical uncertainty using the theory of nonlinear expectations. The dynamic allocation problem of multi-armed bandits will be discussed. In the case of a finite state space in discrete time, we can describe the value function in terms of the solution to a discrete BSDE and obtain a similar notion to the Bellman equation. We also give an approximation scheme to evaluate decisions in the simple setting.


Julien Vaes
-----------
Optimal Execution Strategy Under Price and Volume Uncertainty

In the seminal paper on optimal execution of portfolio transactions, Almgren and Chriss define the optimal trading strategy to liquidate a fixed volume of a single security under price uncertainty. Yet there exist situations, such as in the power market, in which the volume to be traded can only be estimated and becomes more accurate when approaching a specified delivery time. To meet the need of efficient strategies in these situations, we have developed  a model that accounts for volume uncertainty and show that a risk-averse trader has benefit in delaying their trades. We show that the optimal strategy is a trade-off between early and late trades to balance risk associated to both price and volume. With the incorporation of a risk term for the volume to trade, the static optimal strategies obtained with our model avoid the explosion in the algorithmic complexity associated to dynamic programming solutions while yielding to competitive performance.

 

Thu, 24 Jan 2019
12:00
L4

On the uniqueness of graphical mean curvature flow

Mariel Saez
(Pontificia Universidad Católica de Chile)
Abstract

In this talk I will discuss recent work with P. Daskalopoulos on sufficient conditions to prove uniqueness of complete graphs evolving by mean curvature flow. It is interesting to remark that the behaviour of solutions to mean curvature flow differs from the heat equation, where non-uniqueness may occur even for smooth initial conditions if the behaviour at infinity is not prescribed for all times. 

Thu, 24 Jan 2019
11:00
L6

Kim-independence in NSOP1 theories

Itay Kaplan
(Hebrew University)
Abstract

NSOP1 is a class of first order theories containing simple theories, which contains many natural examples that somehow slip-out of the simple context.

As in simple theories, NSOP1 theories admit a natural notion of independence dubbed Kim-independence, which generalizes non-forking in simple theories and satisfies many of its properties.

In this talk I will explain all these notions, and in particular talk about recent progress (joint with Nick Ramsey) in the study of Kim-independence, showing transitivity and several consequences.