16:00
Cosmological correlators and polytopes
Abstract
Following recent papers by Nima Arkani-Hamed.
Following recent papers by Nima Arkani-Hamed.
Authors:
Anne Balter and Antoon Pelsser
Models can be wrong and recognising their limitations is important in financial and economic decision making under uncertainty. Robust strategies, which are least sensitive to perturbations of the underlying model, take uncertainty into account. Interpreting
the explicit set of alternative models surrounding the baseline model has been difficult so far. We specify alternative models by a stochastic change of probability measure and derive a quantitative bound on the uncertainty set. We find an explicit ex ante relation
between the choice parameter k, which is the radius of the uncertainty set, and the Type I and II error probabilities on the statistical test that is hypothetically performed to investigate whether the model specification could be rejected at the future test horizon.
The hypothetical test is constructed to obtain all alternative models that cannot be distinguished from the baseline model with sufficient power. Moreover, we also link the ambiguity bound, which is now a function of interpretable variables, to numerical
values on several divergence measures. Finally, we illustrate the methodology on a robust investment problem and identify how the robustness multiplier can be numerically interpreted by ascribing meaning to the amount of ambiguity.
The Oberwolfach Research Institute for Mathematics (Mathematisches Forschungsinstitut Oberwolfach/MFO) was founded in late 1944 by the Freiburg mathematician Wilhelm Süss (1895-1958) as the „National Institute for Mathematics“. In the 1950s and 1960s the MFO developed into an increasingly international conference centre.
The aim of my project is to analyse the history of the MFO as it institutionally changed from the National Institute for Mathematics with a wide, but standard range of responsibilities, to an international social infrastructure for research completely new in the framework of German academia. The project focusses on the evolvement of the institutional identity of the MFO between 1944 and the early 1960s, namely the development and importance of the MFO’s scientific programme (workshops, team work, Bourbaki) and the instruments of research employed (library, workshops) as well as the corresponding strategies to safeguard the MFO’s existence (for instance under the wings of the Max-Planck-Society). In particular, three aspects are key to the project, namely the analyses of the historical processes of (1) the development and shaping of the MFO’s workshop activities, (2) the (complex) institutional safeguarding of the MFO, and (3) the role the MFO played for the re-internationalisation of mathematics in Germany. Thus the project opens a window on topics of more general relevance in the history of science such as the complexity of science funding and the re-internationalisation of the sciences in the early years of the Federal Republic of Germany.
Joint work with Zsolt Vizi (Bolyai Institute, University of Szeged, Hungary), Istvan Kiss (Department
of Mathematics, University of Sussex, United Kingdom)
Pairwise models have been proven to be a flexible framework for analytical approximations
of stochastic epidemic processes on networks that are in many situations much more accurate
than mean field compartmental models. The non-Markovian aspects of disease transmission
are undoubtedly important, but very challenging to incorporate them into both numerical
stochastic simulations and analytical investigations. Here we present a generalization of
pairwise models to non-Markovian epidemics on networks. For the case of infectious periods
of fixed length, the resulting pairwise model is a system of delay differential equations, which
shows excellent agreement with results based on the explicit stochastic simulations. For more
general distribution classes (uniform, gamma, lognormal etc.) the resulting models are PDEs
that can be transformed into systems of integro-differential equations. We derive pairwise
reproduction numbers and relations for the final epidemic size, and initiate a systematic
study of the impact of the shape of the particular distributions of recovery times on how
the time evolution of the disease dynamics play out.
We discuss shock reflection problem for compressible gas dynamics, von Neumann conjectures on transition between regular and Mach reflections, and existence of regular reflection solutions for potential flow equation. Then we will talk about recent results on uniqueness and stability of regular reflection solutions for potential flow equation in a natural class of self-similar solutions. The approach is to reduce the shock reflection problem to a free boundary problem for a nonlinear elliptic equation, and prove uniqueness by a version of method of continuity. A property of solutions important for the proof of uniqueness is convexity of the free boundary.
This talk is based on joint works with G.-Q. Chen and W. Xiang.
The geometry of the moduli space of 4d N=2 moduli spaces, and in particular of their Coulomb branches (CBs), is very constrained. In this talk I will show that through its careful study, we can learn general and somewhat surprising lessons about the properties of N=2 super conformal field theories (SCFTs). Specifically I will show that we can prove that the scaling dimension of CB coordinates, and thus of the corresponding operator at the SCFT fixed point, has to be rational and it has a rank-dependent maximum value and that in general the moduli spaces of N=2 SCFTs can have metric singularities as well as complex structure singularities.
Finally I will outline how we can explicitly perform a classification of geometries of N>=3 SCFTs and carry out the program up to rank-2. The results are surprising and exciting in many ways.
Massless Quantum Field Theories can be described perturbatively by chiral worldsheet models - the so-called Ambitwistor Strings. In contrast to conventional string theory, where loop amplitudes are calculated from higher genus Riemann surfaces, loop amplitudes in the ambitwistor string localise on the non-separating boundary of the moduli space. I will describe the resulting framework for QFT amplitudes from (nodal) Riemann spheres, building up from tree-level to two-loop amplitudes.
Robert Timms
Title: Multiscale modelling of lithium-ion batteries
Lithium-ion batteries are one of the most widely used technologies for energy storage, with applications ranging from portable electronics to electric vehicles. Due to their popularity, there is a continued interest in the development of mathematical models of lithium-ion batteries. These models encompass various levels of complexity, which may be suitable to aid with design, or for real-time monitoring of performance. After a brief introduction to lithium-ion batteries, I will discuss some of the modelling efforts undertaken here at Oxford and within the wider battery modelling community.
Jan Vonk
Title: Singular moduli for real quadratic fields
At the 1900 ICM, David Hilbert posed a series of problems, of which the 12th remains completely open today. I will discuss how to solve this problem in the simplest open case, by considering certain exotic (so called p-adic) metrics on the set of numbers, and using its concomitant theories of analysis and geometry.
The accurate modelling of geophysical flows often requires information which is difficult to measure and therefore poorly quantified. Such information may relate to the fluid properties or an unknown boundary condition, for example. The premise of this talk is that when the flow is bounded by a free surface, the deformation of this free surface contains useful information which can be used to infer such unknown quantities. The increasing availability of free surface data through remote sensing using drones and satellites provides the impetus to develop new mathematical methods and numerical tools to interpret the signature embedded in the free surface deformation. This talk will explore two recent examples drawn from glaciology and inspired from volcanology for which free surface data was successfully used to reconstruct an unknown field.
Would you like to meet some of your fellow students, and some graduate students and postdocs, in an informal and relaxed atmosphere, while building your communication skills? In this Friday@2 session, you'll be able to play a selection of board games, meet new people, and practise working together. What better way to spend the final Friday afternoon of term?! We'll play the games in the south Mezzanine area of the Andrew Wiles Building, outside L3.
Switch-like and oscillatory dynamical systems are widely observed in biology. We investigate the simplest biological switch that is composed of a single molecule that can be autocatalytically converted between two opposing activity forms. We test how this simple network can keep its switching behaviour under perturbations in the system. We show that this molecule can work as a robust bistable system, even for alterations in the reactions that drive the switching between various conformations. We propose that this single molecule system could work as a primitive biological sensor and show by steady state analysis of a mathematical model of the system that it could switch between possible states for changes in environmental signals. Particularly, we show that a single molecule phosphorylation-dephosphorylation switch could work as a nucleotide or energy sensor. We also notice that a given set of reductions in the reaction network can lead to the emergence of oscillatory behaviour. We propose that evolution could have converted this switch into a single molecule oscillator, which could have been used as a primitive timekeeper. I will discuss how the structure of the simplest known circadian clock regulatory system, found in cyanobacteria, resembles the proposed single molecule oscillator. Besides, we speculate if such minimal systems could have existed in an RNA world. I will also present how the regulatory network of the cell cycle could have emerged from this system and what are the consequences of this possible evolution from a single antagonistic kinase-phosphatase network.
The social sciences are undergoing a profound shift as new data and methods emerge to study human behaviour. These data offer tremendous opportunity but also mathematical and statistical challenges that the field has yet to fully understand. This talk will give an overview of social data science research faculty are undertaking at the Oxford Internet Institute, a multidisciplinary department of the University. Projects include studying the flow of information across languages, the role of political bots, and volatility in public attention.
The celebrated Lang-Vojta Conjecture predicts degeneracy of S-integral points on varieties of log general type defined over number fields. It admits a geometric analogue over function fields, where stronger results have been obtained applying a method developed by Corvaja and Zannier. In this talk, we present a recent result for non-isotrivial surfaces over function fields dominating a two-dimensional torus. This extends Corvaja and Zannier’s result in the isotrivial case and it is based on a refinement of gcd estimates for polynomials evaluated at S-units. This is a joint work with A. Turchet.
Motion at the microscale is a fascinating field visualizing non-equilibrium behaviour of matter. Evolution has optimized the ability of microscale swimming on different length scales from tedpoles, to sperm and bacteria. A constant metabolic energy input is required to achieve active propulsion which means these systems are obeying the laws imposed by a low Reynolds number. Several strategies - including topography1 , chemotaxis or rheotaxis2 - have been used to reliably determine the path of active particles. Curiously, many of these strategies can be recognized as analogues of approaches employed by nature and are found in biological microswimmers.
[[{"fid":"53543","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-square","data-delta":"1"}}]]
Bacteria attached to the metal caps of Janus particles3
However, natural microswimmers are not limited to being exemplary systems on the way to artificial micromotion. They certainly enable us to observe how nature overcame problems such as a lack of inertia, but natural microswimmers also offer the possibility to couple them to artificial microobjects to create biohybrid systems. Our group currently explores different coupling strategies and to create so called ‘BacteriaBots’.4
1 J. Simmchen, J. Katuri, W. E. Uspal, M. N. Popescu, M. Tasinkevych, and S. Sánchez, Nat. Commun., 2016, 7, 10598.
2 J. Katuri, W. E. Uspal, J. Simmchen, A. Miguel-López and S. Sánchez, Sci. Adv., , DOI:10.1126/sciadv.aao1755.
3 M. M. Stanton, J. Simmchen, X. Ma, A. Miguel-Lopez, S. Sánchez, Adv. Mater. Interfaces, DOI:10.1002/admi.201500505.
4 J. Bastos-Arrieta, A. Revilla-Guarinos, W. E. Uspal and J. Simmchen, Front. Robot. AI, 2018, 5, 97.
The usual finite dimensional Grassmannians are well known to be classifying spaces for vector bundles. It is maybe a less known fact that one has certain natural connections on the Stiefel bundles over them, which also have a universality property. I will show how these connections are constructed and explain how this viewpoint can be used to rediscover Chern-Weil theory. Finally, we will see how a certain stabilized version of this, called the restricted Grassmannian, admits a similar construction, which can be used to show that it is a smooth classifying space for differential K-theory.
Standard quadratic programs have numerous applications and play an important role in copositivity detection. We consider reformulating a standard quadratic program as a mixed integer linear programming (MILP) problem. We propose alternative MILP reformulations that exploit the specific structure of standard quadratic programs. We report extensive computational results on various classes of instances. Our experiments reveal that our MILP reformulations significantly outperform other global solution approaches.
This is joint work with Jacek Gondzio.
We study a family of optimal control problems under a set of controlled-loss constraints holding at different deterministic dates. The characterization of the associated value function by a Hamilton-Jacobi-Bellman equation usually calls for additional strong assumptions on the dynamics of the processes involved and the set of constraints. To treat this problem in absence of those assumptions, we first convert it into a state-constrained stochastic target problem and then apply a level-set approach to describe the reachable set. With this approach, the state constraints can be managed through an exact penalization technique. However, a new set of state and control variables enters the definition of this stochastic target problem. In particular, those controls are unbounded. A “compactification” of the problem is then performed. (joint work with Athena Picarelli)
This talk will be an introduction to the use of conformal methods in asymptotic analysis in general relativity. We shall consider the explicit example of flat spacetime (Minkowski spacetime). The full conformal compactification will be constructed. For a simple example of a conformally invariant equation (we'll take the wave equation), we shall see how the compactification allows to infer precise informations on the asymptotic behaviour of the solution in all directions, for a certain class of data at any rate. Then, depending on time and questions, I will either describe how a scattering theory can be constructed using the same method or, explain how conformal methods can be used on other asymptotically flat geometries.
In 1982, Gromov introduced bounded cohomology to give estimates on the minimal volume of manifolds. Since then, bounded cohomology has become an independent and active research field. In this talk I will give an introduction to bounded cohomology, state many open problems and relate it to other fields.
Pseudorandom functions (PRFs) are one of the fundamental building blocks in cryptography. Traditionally, there have been two main approaches for PRF design: the ``practitioner's approach'' of building concretely-efficient constructions based on known heuristics and prior experience, and the ``theoretician's approach'' of proposing constructions and reducing their security to a previously-studied hardness assumption. While both approaches have their merits, the resulting PRF candidates vary greatly in terms of concrete efficiency and design complexity. In this work, we depart from these traditional approaches by exploring a new space of plausible PRF candidates. Our guiding principle is to maximize simplicity while optimizing complexity measures that are relevant to cryptographic applications. Our primary focus is on weak PRFs computable by very simple circuits (depth-2 ACC^0 circuits). Concretely, our main weak PRF candidate is a ``piecewise-linear'' function that first applies a secret mod-2 linear mapping to the input, and then a public mod-3 linear mapping to the result. We also put forward a similar depth-3 strong PRF candidate.
The advantage of our approach is twofold. On the theoretical side, the simplicity of our candidates enables us to draw many natural connections between their hardness and questions in complexity theory or learning theory (e.g., learnability of depth-2 ACC^0 circuits and width-3 branching programs, interpolation and property testing for sparse polynomials, and natural proof barriers for showing super-linear circuit lower bounds). On the applied side, the piecewise-linear structure of our candidates lends itself nicely to applications in secure multiparty computation (MPC). Using our PRF candidates, we construct protocols for distributed PRF evaluation that achieve better round complexity and/or communication complexity (often both) compared to protocols obtained by combining standard MPC protocols with PRFs like AES, LowMC, or Rasta (the latter two are specialized MPC-friendly PRFs).
Finally, we introduce a new primitive we call an encoded-input PRF, which can be viewed as an interpolation between weak PRFs and standard (strong) PRFs. As we demonstrate, an encoded-input PRF can often be used as a drop-in replacement for a strong PRF, combining the efficiency benefits of weak PRFs and the security benefits of strong PRFs. We conclude by showing that our main weak PRF candidate can plausibly be boosted to an encoded-input PRF by leveraging standard error-correcting codes.
Joint work with Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu.
We will talk about set theory, and, more specifically, forcing. Forcing is powerful. It is the go-to method for proving the independence of the continuum hypothesis or for understanding the (lack of) fine structure of the real numbers. However, forcing is hard. Keen to export their theorems to more mainstream areas of mathematics, set theorists have tackled this issue by inventing forcing axioms, (relatively) simple mathematical statements which describe sophisticated forcing extensions. In my talk, I will present the basics of forcing, I will introduce some interesting forcing axioms and I will show how these might be used to obtain surprising independence results.
When approximating PDEs with the finite element method, large sparse linear systems must be solved. The ideal preconditioner yields convergence that is algorithmically optimal and parameter robust, i.e. the number of Krylov iterations required to solve the linear system to a given accuracy does not grow substantially as the mesh or problem parameters are changed.
Achieving this for the stationary Navier-Stokes has proven challenging: LU factorisation is Reynolds-robust but scales poorly with degree of freedom count, while Schur complement approximations such as PCD and LSC degrade as the Reynolds number is increased.
Building on the work of Schöberl, Olshanskii and Benzi, in this talk we present the first preconditioner for the Newton linearisation of the stationary Navier--Stokes equations in three dimensions that achieves both optimal complexity and Reynolds-robustness. The scheme combines a novel tailored finite element discretisation, discrete augmented Lagrangian stabilisation, a custom prolongation operator involving local solves on coarse cells, and an additive patchwise relaxation on each
level. We present 3D simulations with over one billion degrees of freedom with robust performance from Reynolds number 10 to 5000.
Employing the usual multilevel Monte Carlo estimator, we introduce a framework for estimating the solutions of SDEs by an Euler-Maruyama scheme. By considering the expected value of such solutions, we produce simulations using approximately normal random variables, and recover the estimate from the exact normal distribution by use of a multilevel correction, leading to faster simulations without loss of accuracy. We will also highlight this concept in the framework of reduced precision and vectorised computations.
Wrinkling is a universal instability occurring in a wide variety of engineering and biological materials. It has been studied extensively for many different systems but a full description is still lacking. Here, we provide a systematic analysis of the wrinkling of a thin hyperelastic film over a substrate in plane strain using stream functions. For comparison, we assume that wrinkling is generated either by the isotropic growth of the film or by the lateral compression of the entire system. We perform an exhaustive linear analysis of the wrinkling problem for all stiffness ratios and under a variety of additional boundary and material effects.
Crime is a major risk to society’s well-being, particularly in cities, and yet the scientific literature lacks a comprehensive statistical characterization of crime that could uncover some of the mechanisms behind such pervasive social phenomenon. Evidence of nonlinear scaling of urban indicators in cities, such as wages and serious crime, has motivated the understanding of cities as complex systems—a perspective that offers insights into resources limits and sustainability, but usually without examining the details of indicators. Notably, since the nineteenth century, criminal activities have been known not to occur uniformly within a city. Crime concentrates in such way that most of the offenses take place in few regions of the city. However, though this concentration is confirmed by different studies, the absence of broad examinations of the characteristics of crime concentration hinders not only the comprehension of crime dynamics but also the proposal of sounding counter-measures. Here, we developed a framework to characterize crime concentration which splits cities into regions with the same population size. We used disaggregated criminal data from 25 locations in the U.S. and the U.K. which include offenses in places spanning from 2 to 15 years of data. Our results confirmed that crime concentrates regardless of city and revealed that the level of concentration does not scale with city size. We found that distribution of crime in a city can be approximated by a power-law distribution with exponent α that depends on the type of crime. In particular, our results showed that thefts tend to concentrate more than robberies, and robberies more than burglaries. Though criminal activities present regularities of concentration, we found that criminal ranks have the tendency to change continuously over time. Such features support the perspective of crime as a complex system which demands analyses and evolving urban policies covering the city as a whole.
I will introduce two obstructions for a rational homology 3-sphere to smoothly bound a rational homology 4-ball- one coming from Donaldson's theorem on intersection forms of definite 4-manifolds, and the other coming from correction terms in Heegaard Floer homology. If L is a nonunimodular definite lattice, then using a theorem of Elkies we will show that whether L embeds in the standard definite lattice of the same rank is completely determined by a collection of lattice correction terms, one for each metabolizing subgroup of the discriminant group. As a topological application this gives a rephrasing of the obstruction coming from Donaldson's theorem. Furthermore, from this perspective it is easy to see that if the obstruction to bounding a rational homology ball coming from Heegaard Floer correction terms vanishes, then (under some mild hypotheses) the obstruction from Donaldson's theorem vanishes too.
The Prandtl equation was derived in 1904 by Ludwig Prandtl in order to describe the behavior of fluids with small viscosity around a solid obstacle. Over the past decades, several results of ill-posedness in Sobolev spaces have been proved for this equation. As a consequence, it is natural to look for more sophisticated boundary layer models, that describe the coupling with the outer Euler flow at a higher order. Unfortunately, these models do not always display better mathematical properties, as I will explain in this talk. This is a joint work with Helge Dietert, David Gérard-Varet and Frédéric Marbach.
In this talk I will articulate and contextualize the following sequence of results.
The Bruhat decomposition of the general linear group defines a stratification of the orthogonal group.
Matrix multiplication defines an algebra structure on its exit-path category in a certain Morita category of categories.
In this Morita category, this algebra acts on the category of n-categories -- this action is given by adjoining adjoints to n-categories.
This result is extracted from a larger program -- entirely joint with John Francis, some parts joint with Nick Rozenblyum -- which proves the cobordism hypothesis.
In semimartingale optimal transport problem, the functional to be minimized can be considered as a “stochastic action”, which is the expectationof a “stochastic Lagrangian” in terms of differential semimartingale characteristics. Therefore it would be natural to apply variational calculus approach to characterize the minimizers. R. Lassalle and A.B. Cruzeiro have used this approach to establish a stochastic Euler-Lagrangian condition for semimartingale optimal transport by perturbing the drift terms. Motivated by their work, we want to perform the same type of calculus for martingale optimal transport problem. In particular, instead of only considering perturbations in the drift terms, we try to find a nice variational family for volatility,and then obtain the stochastic Euler-Lagrangian condition for martingale laws. In the first part of this talk we will mention some basic results regarding the existence of minimizers in semimartingale optimal transport problem. In the second part, we will introduce Lassalle and Cruzeiro’s work, and give a simple example related to this topic, where the variational family is induced by time-changes; and then we will introduce some potential problems that are needed to be solved.
We prove the quenched version of the central limit theorem for the displacement of a random walk in doubly stochastic random environment, under the $H_{-1}$-condition, with slightly stronger, $L^{2+\epsilon}$ (rather than $L^2$) integrability condition on the stream tensor. On the way we extend Nash's moment bound to the non-reversible, divergence-free drift case.
Amplituhedra are mathematical objects generalising the notion of polytopes into the Grassmannian. Proposed as a geometric construction encoding scattering amplitudes in the four-dimensional maximally supersymmetric Yang-Mills theory, they are mathematically interesting objects on their own. In my talk I strengthen the relation between scattering amplitudes and geometry by linking the amplituhedron to the Jeffrey-Kirwan residue, a powerful concept in symplectic and algebraic geometry. I focus on a particular class of amplituhedra in any dimension, namely cyclic polytopes, and their even-dimensional
conjugates. I show how the Jeffrey-Kirwan residue prescription allows to extract the correct amplituhedron canonical differential form in all these cases. Notably, this also naturally exposes the rich combinatorial structures of amplituhedra, such as their regular triangulations
This will be the final mathematrix meeting for the term and we will be discussing Implicit Bias. In short, Implicit Bias is to do with perceptions and judgements we unconsciously make about people based on preconceptions we have about certain appearances, background or other characteristics. Even if we are not aware of making these judgements, they can affect our actions and decisions none-the-less. For a slightly longer introduction about this topic and how it can relate to academia, we suggest reading the following article: http://science.sciencemag.org/content/352/6289/1067.full
In this session we hope to explain more about what implicit bias is, how it might affect us, and discuss ways to avoid implicit bias and make ourselves and others more aware of it.
Everyone is welcome! Monday, 1300-1400, Quillen Room (N3.12), with lunch provided.
I will describe recent progress in the study of scattering amplitudes in gauge theory and gravity at loop level, using the formalism of the scattering equations. The scattering equations relate the kinematics of the scattering of massless particles to the moduli space of the sphere. Underpinned by ambitwistor string theory, this formalism provides new insights into the relation between tree-level and loop-level contributions to scattering amplitudes. In this talk, I will describe results up to two loops on how loop integrands can be constructed as forward-limits of trees. One application is the loop-level understanding of the colour-kinematics duality, a symmetry of perturbative gauge theory which relates it to perturbative gravity.
Are you teaching intercollegiate classes or tutorials this term? Would you like to explore inclusive teaching strategies that could help all students make the most of your sessions? In this interactive workshop, we'll explore strategies that have been found effective. This will be a self-contained session, but will also be a good introduction to the "Developing Learning and Teaching" course offered by MPLS for graduate students and early career researchers. The session will be led by Vicky Neale (Mathematics) and Delia O'Rourke (Oxford Learning Institute).
This session is particularly aimed at fourth-year and OMMS students who are completing a dissertation this year. The talk will be given by Dr Richard Earl who chairs Projects Committee. For many of you this will be the first time you have written such an extended piece on mathematics. The talk will include advice on planning a timetable, managing the workload, presenting mathematics, structuring the dissertation and creating a narrative, providing references and avoiding plagiarism.
In 1973, Serre observed that the Hecke eigenvalues of Eisenstein series can be p-adically interpolated. In other words, Eisenstein series can be viewed as specializations of a p-adic family parametrized by the weight. The notion of p-adic variations of modular forms was later generalized by Hida to include families of ordinary cuspforms. In 1998, Coleman and Mazur defined the eigencurve, a rigid analytic space classifying much more general p-adic families of Hecke eigenforms parametrized by the weight. The local nature of the eigencurve is well-understood at points corresponding to cuspforms of weight k ≥ 2, while the weight one case is far more intricate.
In this talk, we discuss the geometry of the eigencurve at weight one Eisenstein points. Our approach consists in studying the deformation rings of certain (deceptively simple!) Artin representations. Via this Galois-theoretic method, we obtain the q-expansion of some non-classical overconvergent forms in terms of p-adic logarithms of p-units in certain number field. Finally, we will explain how these calculations suggest a different approach to the Gross-Stark conjecture.
Images are a rich source of beautiful mathematical formalism and analysis. Associated mathematical problems arise in functional and non-smooth analysis, the theory and numerical analysis of partial differential equations, harmonic, stochastic and statistical analysis, and optimisation. Starting with a discussion on the intrinsic structure of images and their mathematical representation, in this talk we will learn about variational models for image analysis and their connection to partial differential equations, and go all the way to the challenges of their mathematical analysis as well as the hurdles for solving these - typically non-smooth - models computationally. The talk is furnished with applications of the introduced models to image de-noising, motion estimation and segmentation, as well as their use in biomedical image reconstruction such as it appears in magnetic resonance imaging.
In this talk I will present two recent findings concerning the preconditioning of elliptic problems. The first result concerns preconditioning of elliptic problems with variable coefficient K by an inverse Laplacian. Here we show that there is a close relationship between the eigenvalues of the preconditioned system and K.
The second results concern the problem on mixed form where K approaches zero. Here, we show a uniform inf-sup condition and corresponding robust preconditioning.