Mathematical Biology and Ecology seminars take place in room L3 of the Mathematical Institute from 2-3pm on Fridays of full term. You can also join us afterwards for tea in the Mathematical Institute Common Room.

Upcoming seminars:

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Fri, 31 May 2024

14:00 - 15:00
L3

Cytoneme-mediated morphogenesis

Prof Paul Bressloff
(Dept of Mathematics Imperial College London)
Abstract

Morphogen protein gradients play an essential role in the spatial regulation of patterning during embryonic development.  The most commonly accepted mechanism of protein gradient formation involves the diffusion and degradation of morphogens from a localized source. Recently, an alternative mechanism has been proposed, which is based on cell-to-cell transport via thin, actin-rich cellular extensions known as cytonemes. It has been hypothesized that cytonemes find their targets via a random search process based on alternating periods of retraction and growth, perhaps mediated by some chemoattractant. This is an actin-based analog of the search-and-capture model of microtubules of the mitotic spindle searching for cytochrome binding sites (kinetochores) prior to separation of cytochrome pairs. In this talk, we introduce a search-and-capture model of cytoneme-based morphogenesis, in which nucleating cytonemes from a source cell dynamically grow and shrink until making contact with a target cell and delivering a burst of morphogen. We model the latter as a one-dimensional search process with stochastic resetting, finite returns times and refractory periods. We use a renewal method to calculate the splitting probabilities and conditional mean first passage times (MFPTs) for the cytoneme to be captured by a given target cell. We show how multiple rounds of search-and-capture, morphogen delivery, cytoneme retraction and nucleation events lead to the formation of a morphogen gradient. We proceed by formulating the morphogen bursting model as a queuing process, analogous to the study of translational bursting in gene networks. We end by briefly discussing current work on a model of cytoneme-mediated within-host viral spread.

Fri, 07 Jun 2024

14:00 - 15:00
L3

Modeling the electromechanics of aerial electroreception

Dr Isaac Vikram Chenchiah
(School of Mathematics University of Bristol)
Abstract
Aerial electroreception is the ability of some arthropods (e.g., bees) to detect electric fields in the environment. I present an overview of our attempts to model the electromechanics of this recently discovered phenomenon and how it might contribute to the sensory biology of arthropods. This is joint work with Daniel Robert and Ryan Palmer.


 

Fri, 14 Jun 2024

14:00 - 15:00
L3

Brain mechanics in the Data era

Prof Antoine Jerusalem
(Dept of Engineering Science University of Oxford)
Abstract

In this presentation, we will review how the field of Mechanics of Materials is generally framed and see how it can benefit from and be of benefit to the current progress in AI. We will approach this problematic in the particular context of Brain mechanics with an application to traumatic brain injury in police investigations. Finally we will briefly show how our group is currently applying the same methodology to a range of engineering challenges.

Mon, 17 Jun 2024

11:00 - 12:00
L2

Mathematical modelling to support New Zealand’s Covid-19 response

Professor Mike Plank
(Dept of Mathematics & Statistics University of Canterbury)
Abstract

In this talk, I will describe some of the ways in which mathematical modelling contributed to the Covid-19 pandemic response in New Zealand. New Zealand adopted an elimination strategy at the beginning of the pandemic and used a combination of public health measures and border restrictions to keep incidence of Covid-19 low until high vaccination rates were achieved. The low or zero prevalence for first 18 months of the pandemic called for a different set of modelling tools compared to high-prevalence settings. It also generated some unique data that can give valuable insights into epidemiological characteristics and dynamics. As well as describing some of the modelling approaches used, I will reflect on the value modelling can add to decision making and some of the challenges and opportunities in working with stakeholders in government and public health.        

 

 

Please contact us with feedback and comments about this page. Last updated on 17 Oct 2022 16:06.