Fri, 12 Jun 2020

16:00 - 17:00
Virtual

North Meets South

Paolo Aceto
Abstract

Paolo Aceto

Knot concordance and homology cobordisms of 3-manifolds 

We introduce the notion of knot concordance for knots in the 3-sphere and discuss some key problems regarding the smooth concordance group. After defining homology cobordisms of 3-manifolds we introduce the integral and rational homology cobordism groups and briefly discuss their relationship with the concordance group. We conclude stating a few recent results and open questions on the structure of these groups.

Fri, 22 May 2020

16:00 - 17:00
Virtual

North Meets South

Lucie Domino and Clemens Koppensteiner
(University of Oxford)
Abstract
Lucie Domino
How to build 3D shapes from flat sheets using a three-centuries old theory
 
In this talk, I’ll present some of our recent work on morphing structures. We start from flat two-dimensional sheets which have been carefully cut and transform them into three-dimensional axisymmetric structures by applying edge-loads. We base our approach on the well-known Elastica theory developed by Euler to create structures with positive, negative, and variable Gaussian curvatures. We illustrate this with famous architectural examples, and verify our theory by both numerical simulations and physical experiments.
 
 
Clemens Koppensteiner
Logarithmic Riemann-Hilbert Correspondences

The classical Riemann-Hilbert correspondence is an elegant statement linking geometry (via flat connections) and topology (via local systems). However, when one allows the connections to have even simple singularities, the naive correspondence breaks down. We will outline some work on understanding this "logarithmic" setting.
Fri, 01 May 2020

16:00 - 17:00
Virtual

Guidance in applying for EPSRC fellowships

Laura McDonnell
(UKRI EPSRC)
Abstract

In this session, Laura will explain the process of applying for an EPSRC fellowship. In particular, there will be a discussion on the Future Leaders Fellowships, New Investigator Awards and Standard Grant applications. There will also be a discussion on applying for EPSRC funding more generally. Laura will answer any questions that people have. 

Thu, 07 May 2020

16:00 - 16:45
Virtual

OCIAM learns ... about exponential asymptotics

Professor Jon Chapman
(Mathematical Institute)
Further Information

A new bi-weekly seminar series, 'OCIAM learns...."

Internal speakers give a general introduction to a topic on which they are experts.

Thu, 30 Apr 2020

16:45 - 18:00
Virtual

Inverting a signature of a path

Weijun Xu
(University of Oxford)
Further Information
Abstract

Abstract: The signature of a path is a sequence of iterated coordinate integrals along the path. We aim at reconstructing a path from its signature. In the special case of lattice paths, one can obtain exact recovery based on a simple algebraic observation. For general continuously differentiable curves, we develop an explicit procedure that allows to reconstruct the path via piecewise linear approximations. The errors in the approximation can be quantified in terms of the level of signature used and modulus of continuity of the derivative of the path. The main idea is philosophically close to that for the lattice paths, and this procedure could be viewed as a significant generalisation. A key ingredient is the use of a symmetrisation procedure that separates the behaviour of the path at small and large scales.We will also discuss possible simplifications and improvements that may be potentially significant. Based on joint works with Terry Lyons, and also with Jiawei Chang, Nick Duffield and Hao Ni.

Thu, 30 Apr 2020

16:00 - 16:45
Virtual

Learning with Signatures: embedding and truncation order selection

Adeline Fermanian
(Sorbonne Université)
Further Information
Abstract

Abstract: Sequential and temporal data arise in many fields of research, such as quantitative finance, medicine, or computer vision. We will be concerned with a novel approach for sequential learning, called the signature method, and rooted in rough path theory. Its basic principle is to represent multidimensional paths by a graded feature set of their iterated integrals, called the signature. On the one hand, this approach relies critically on an embedding principle, which consists in representing discretely sampled data as paths, i.e., functions from [0,1] to R^d. We investigate the influence of embeddings on prediction accuracy with an in-depth study of three recent and challenging datasets. We show that a specific embedding, called lead-lag, is systematically better, whatever the dataset or algorithm used. On the other hand, in order to combine signatures with machine learning algorithms, it is necessary to truncate these infinite series. Therefore, we define an estimator of the truncation order and prove its convergence in the expected signature model.

Subscribe to