Homogenization theory aims to understand the properties of materials with complicated microstructures, such as those arising from flaws in a manufacturing process or from randomly deposited impurities. The goal is to identify an effective model that provides an accurate approximation of the original material. Oxford Mathematician Benjamin Fehrman discusses his research. 

"The practical considerations for identifying a simplified model are twofold:

Tue, 22 Jan 2019

15:30 - 16:30
L4

The tautological ring of Shimura varieties

Paul Ziegler
(Oxford)
Abstract

Not much is known about the Chow rings  of moduli spaces of abelian varieties or more general Shimura varieties. The tautological ring of a Shimura variety of Hodge type is a subring of its Chow ring containing many "interesting" classes. I will talk about joint work with Torsten Wedhorn on this ring as well as its characteristic p variant. The later is strongly related to the question of understanding the cycle classes of Ekedahl-Oort strata in the Chow ring.

Thu, 14 Feb 2019

16:00 - 17:30
L3

The role of soluble surfactants on the stability of two-layer flow in a channel

Dr Anna Kalogirou
(University of East Anglia)
Abstract

A two-layer shear flow in the presence of surfactants is considered. The flow configuration comprises two superposed layers of viscous and immiscible fluids confined in a long horizontal channel, and characterised by different densities, viscosities and thicknesses. The surfactants can be insoluble, i.e. located at the interface between the two fluids only, or soluble in the lower fluid in the form of monomers (single molecules) or micelles (multi-molecule aggregates). A mathematical model is formulated, consisting of governing equations for the hydrodynamics and appropriate transport equations for the surfactant concentration at the interface, the concentration of monomers in the bulk fluid and the micelle concentration. A primary objective of this study is to investigate the effect of surfactants on the stability of the interface, and in particular surfactants in high concentrations and above the critical micelle concentration (CMC). Interfacial instabilities are induced due to the acting forces of gravity and inertia, as well as the action of Marangoni forces generated as a result of the dependence of surface tension on the interfacial surfactant concentration. The underlying physical mechanism responsible for the formation of interfacial waves will be discussed, together with the complex flow dynamics (typical nonlinear phenomena associated with interfacial flows include travelling waves, solitary pulses, quasi-periodic and chaotic dynamics).

Tue, 15 Jan 2019
16:00
L5

On strongly minimal Steiner systems Zilber’s Conjecture, Universal Algebra, and Combinatorics

John Baldwin
(University of Illinois at Chicago)
Abstract

With Gianluca Paolini (in preparation), we constructed, using a variant on the Hrushovski dimension function, for every k ≥ 3, 2^µ families of strongly minimal Steiner k systems. We study the mathematical properties of these counterexamples to Zilber’s trichotomy conjecture rather than thinking of them as merely exotic examples. In particular the long study of finite Steiner systems in reflected in results that depend on the block size k. A quasigroup is a structure with a binary operation such that for each equation xy = z the values of two of the variables determines a unique value for the third. The new Steiner 3-systems are bi-interpretable with strongly minimal Steiner quasigroups. For k > 3, we show the pure k-Steiner systems have ‘essentially unary definable closure’ and do not interpret a quasigroup. But we show that for q a prime power the Steiner q systems can be interpreted into specific sorts of quasigroups, block algebras. We extend the notion of an (a, b)-cycle graph arising in the study of finite and infinite Stein triple systems (e.g Cameron-Webb) by introducing what we call the (a, b)-path graph of a block algebra. We exhibit theories of strongly minimal block algebras where all (a, b)-paths are infinite and others in which all are finite only in the prime model. We show how to obtain combinatorial properties (e.g. 2-transitivity) by the either varying the basic collection of finite partial Steiner systems or modifying the µ function which ensures strong minimality

Thu, 17 Jan 2019
11:00
L6

Philosophical implications of the paradigm shift in model theory

John Baldwin
(University of Illinois at Chicago)
Abstract



Traditionally, logic was thought of as `principles of right reason'. Early twentieth century philosophy of mathematics focused on the problem of a general foundation for all mathematics. In contrast, the last 70 years have seen model theory develop as the study and comparison of formal theories for studying specific areas of mathematics. While this shift began in work of Tarski, Robinson, Henkin, Vaught, and Morley, the decisive step came with Shelah's stability theory. After this paradigm shift there is a systematic search for a short set of syntactic conditions which divide first order theories into disjoint classes such that models of different theories in the same class have similar mathematical properties. This classification of theories makes more precise the idea of a `tame structure'. Thus, logic (specifically model theory) becomes a tool for organizing and doing mathematics with consequences for combinatorics, diophantine geometry, differential equations and other fields. I will present an account of the last 70 years in model theory that illustrates this shift. This reports material in my recent book published by Cambridge: Formalization without Foundationalism: Model Theory and the Philosophy of Mathematical Practice.

Tue, 18 Jun 2019

14:15 - 15:15
L4

The congruence subgroup problem for a family of branch groups

Rachel Skipper
(Lyon)
Abstract

A group acting on a regular rooted tree has the congruence subgroup property if every subgroup of finite index contains a level stabilizer. The congruence subgroup problem then asks to quantitatively describe the kernel of the surjection from the profinite completion to the topological closure as a subgroup of the automorphism group of the tree. We will study the congruence subgroup property for a family of branch groups whose construction generalizes that of the Hanoi Towers group, which models the game “The Towers of Hanoi".

 

Fri, 30 Nov 2018

12:00 - 12:30
L4

I'm not a number: Social data science at the Oxford Internet Institute

Scott Hale
(Oxford Internet Institute)
Abstract

The social sciences are undergoing a profound shift as new data and methods emerge to study human behaviour. These data offer tremendous opportunity but also mathematical and statistical challenges that the field has yet to fully understand. This talk will give an overview of social data science research faculty are undertaking at the Oxford Internet Institute, a multidisciplinary department of the University. Projects include studying the flow of information across languages, the role of political bots, and volatility in public attention.

Subscribe to