Elementary particles in two dimensional systems are not constrained by the fermion-boson alternative. They are so-called "anyons''. Anyon systems are modelled by modular tensor categories, and form an active area of research. Oxford Mathematician André Henriques explains his interest in the question.

Tue, 05 Nov 2019

14:15 - 15:15
L4

Axiomatizability and profinite groups

Dan Segal
(Oxford University)
Abstract

A mathematical structure is `axiomatizable' if it is completely determined by some family of sentences in a suitable first-order language. This idea has been explored for various kinds of structure, but I will concentrate on groups. There are some general results (not many) about which groups are or are not axiomatizable; recently there has been some interest in the sharper concept of 'finitely axiomatizable' or FA - that is, when only a finite set of sentences (equivalently, a single sentence) is allowed.

While an infinite group cannot be FA, every finite group is so, obviously. A profinite group is kind of in between: it is infinite (indeed, uncountable), but compact as a topological group; and these groups share many properties of finite groups, though sometimes for rather subtle reasons. I will discuss some recent work with Andre Nies and Katrin Tent where we prove that certain kinds of profinite group are FA among profinite groups. The methods involve a little model theory, and quite a lot of group theory.

 

Tue, 22 Oct 2019
14:15
L4

Representations associated to gradations of colour Lie algebras

Philippe Meyer
(Oxford University)
Abstract

The notion of colour Lie algebra, introduced by Ree (1960), generalises notions of Lie algebra and Lie superalgebra. From an orthogonal representation V of a quadratic colour Lie algebra g, we give various ways of constructing a colour Lie algebra g’ whose bracket extends the bracket of g and the action of g on V. A first possibility is to consider g’=g⊕V and requires the cancellation of an invariant studied by Kostant (1999). Another construction is possible when the representation is ``special’’ and in this case the extension is of the form g’=g⊕sl(2,k)⊕V⊗k^2. Covariants are associated to special representations and satisfy to particular identities generalising properties studied by Mathews (1911) on binary cubics. The 7-dimensional fundamental representation of a Lie algebra of type G_2 and the 8-dimensional spinor representation of a Lie algebra of type so(7) are examples of special representations.

Reversible signal transmission in an active mechanical metamaterial.
Browning, A Woodhouse, F Simpson, M Proceedings. Mathematical, physical, and engineering sciences volume 475 issue 2227 20190146 (24 Jul 2019)
Fri, 25 Oct 2019

17:30 - 18:30
L1

Jon Chapman - Waves and resonance: from musical instruments to vacuum cleaners, via metamaterials and invisibility cloaks

Jon Chapman
(University of Oxford)
Further Information

Oxford Mathematics Public Lectures 

Jon Chapman - Waves and resonance: from musical instruments to vacuum cleaners, via metamaterials and invisibility cloaks.

Friday 25 October 2019

5.30pm-6.30pm, Mathematical Institute, Oxford

Please email @email to register.

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/chapman

Jon Chapman is Professor of Mathematics and its Applications in Oxford.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Fri, 15 Nov 2019

10:00 - 11:00
L3

Single molecule tracking, Metropolis-Hastings sampling and graphs

Michael Hirsch
(STFC)
Abstract

Optical super-resolution microscopy enables the observations of individual bio-molecules. The arrangement and dynamic behaviour of such molecules is studied to get insights into cellular processes which in turn lead to various application such as treatments for cancer diseases. STFC's Central Laser Facility provides (among other) public access to super-resolution microscope techniques via research grants. The access includes sample preparation, imaging facilities and data analysis support. Data analysis includes single molecule tracking algorithms that produce molecule traces or tracks from time series of molecule observations. While current algorithms are gradually getting away from "connecting the dots" and using probabilistic methods, they often fail to quantify the uncertainties in the results. We have developed a method that samples a probability distribution of tracking solutions using the Metropolis-Hastings algorithm. Such a method can produce likely alternative solutions together with uncertainties in the results. While the method works well for smaller data sets, it is still inefficient for the amount of data that is commonly collected with microscopes. Given the observations of the molecules, tracking solutions are discrete, which gives the proposal distribution of the sampler a peculiar form. In order for the sampler to work efficiently, the proposal density needs to be well designed. We will discuss the properties of tracking solutions and the problems of the proposal function design from the point of view of discrete mathematics, specifically in terms of graphs. Can mathematical theory help to design a efficient proposal function?

Tue, 24 Sep 2019
14:15
L4

Contravariant forms on Whittaker modules

Adam Brown
(IST Austria)
Abstract

In 1985, McDowell introduced a family of parabolically induced Whittaker modules over a complex semisimple Lie algebra, which includes both Verma modules and the nondegenerate Whittaker modules studied by Kostant. Many classical results for Verma modules and the Bernstein--Gelfand--Gelfand category O have been generalized to the category of Whittaker modules introduced by Milicic--Soergel, including the classification of irreducible objects and the Kazhdan--Lusztig conjectures. Contravariant forms on Verma modules are unique up to scaling and play a key role in the definition of the Jantzen filtration. In this talk I will discuss a classification of contravariant forms on parabolically induced Whittaker modules. In a recent result, joint with Anna Romanov, we show that the dimension of the space of contravariant forms on a parabolically induced Whittaker module is given by the cardinality of a Weyl group. This result illustrates a divergence from classical results for Verma modules, and gives insight to two significant open problems in the theory of Whittaker modules: the Jantzen conjecture and the absence of an algebraic definition of duality.

Subscribe to