Search for neutrinos from decaying dark matter with IceCube
Collaboration, I Aartsen, M Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Samarai, I Altmann, D Andeen, K Anderson, T Ansseau, I Anton, G Argüelles, C Auffenberg, J Axani, S Backes, P Bagherpour, H Bai, X Barron, J Barwick, S Baum, V Bay, R Beatty, J Tjus, J Becker, K BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Bohm, C Börner, M Bos, F Böser, S Botner, O Bourbeau, E Bourbeau, J Bradascio, F Braun, J Brenzke, M Bretz, H Bron, S Brostean-Kaiser, J Burgman, A Busse, R Carver, T Cheung, E Chirkin, D Christov, A Clark, K Classen, L Collin, G Conrad, J Coppin, P Correa, P Cowen, D Cross, R Dave, P Day, M André, J Clercq, C DeLaunay, J Dembinski, H Ridder, S Desiati, P Vries, K Wasseige, G With, M DeYoung, T Díaz-Vélez, J Lorenzo, V Dujmovic, H Dumm, J Dunkman, M Dvorak, E Eberhardt, B Ehrhardt, T Eichmann, B Eller, P Evenson, P Fahey, S Fazely, A Felde, J Filimonov, K Finley, C Flis, S Franckowiak, A Friedman, E Fritz, A Gaisser, T Gallagher, J Ganster, E Gerhardt, L Ghorbani, K Giang, W Glauch, T Glüsenkamp, T Goldschmidt, A Gonzalez, J Grant, D Griffith, Z Haack, C Hallgren, A Halve, L Halzen, F Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hickford, S Hignight, J Hill, G Hoffman, K Hoffmann, R Hoinka, T Hokanson-Fasig, B Hoshina, K Huang, F Huber, M Hultqvist, K Hünnefeld, M Hussain, R In, S Iovine, N Ishihara, A Jacobi, E Japaridze, G Jeong, M Jero, K Jones, B Kalaczynski, P Kang, W Kappes, A Kappesser, D Karg, T Karle, A Katz, U Kauer, M Keivani, A Kelley, J Kheirandish, A Kim, J Kim, M Kintscher, T Kiryluk, J Kittler, T Klein, S Koirala, R Kolanoski, H Köpke, L Kopper, C Kopper, S Koschinsky, J Koskinen, D Kowalski, M Krings, K Kroll, M Krückl, G Kunwar, S Kurahashi, N Kuwabara, T Kyriacou, A Labare, M Lanfranchi, J Larson, M Lauber, F Leonard, K Lesiak-Bzdak, M Leuermann, M Liu, Q Lohfink, E Mariscal, C Lu, L Lünemann, J Luszczak, W Madsen, J Maggi, G Mahn, K Mancina, S Maruyama, R Mase, K Maunu, R Meagher, K Medici, M Meier, M Menne, T Merino, G Meures, T Miarecki, S Micallef, J Momenté, G Montaruli, T Moore, R Moulai, M Nahnhauer, R Nakarmi, P Naumann, U Neer, G Niederhausen, H Nowicki, S Nygren, D Pollmann, A Olivas, A O'Murchadha, A O'Sullivan, E Palczewski, T Pandya, H Pankova, D Peiffer, P Pepper, J Heros, C Pieloth, D Pinat, E Plum, M Price, P Przybylski, G Raab, C Rädel, L Rameez, M Rauch, L Rawlins, K Rea, I Reimann, R Relethford, B Relich, M Resconi, E Rhode, W Richman, M Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Rysewyk, D Safa, I Herrera, S Sandrock, A Sandroos, J Santander, M Sarkar, S Satalecka, K Schaufel, M Schlunder, P Schmidt, T Schneider, A Schoenen, S Schöneberg, S Schumacher, L Sclafani, S Seckel, D Seunarine, S Soedingrekso, J Soldin, D Song, M Spiczak, G Spiering, C Stachurska, J Stamatikos, M Stanev, T Stasik, A Stein, R Stettner, J Steuer, A Stezelberger, T Stokstad, R Stößl, A Strotjohann, N Stuttard, T Sullivan, G Sutherland, M Taboada, I Tatar, J Tenholt, F Ter-Antonyan, S Terliuk, A Tilav, S Toale, P Tobin, M Tönnis, C Toscano, S Tosi, D Tselengidou, M Tung, C Turcati, A Turley, C Ty, B Unger, E Usner, M Vandenbroucke, J Driessche, W Eijk, D Eijndhoven, N Vanheule, S Santen, J Vraeghe, M Walck, C Wallace, A Wallraff, M Wandler, F Wandkowsky, N Waza, A Weaver, C Weiss, M Wendt, C Werthebach, J Westerhoff, S Whelan, B Wiebe, K Wiebusch, C Wille, L Williams, D Wills, L Wolf, M Wood, J Wood, T Woolsey, E Woschnagg, K Wrede, G Xu, D Xu, X Xu, Y Yanez, J Yodh, G Yoshida, S Yuan, T Eur. Phys. J. C (2018) 78: 831 (16 Oct 2018) http://arxiv.org/abs/1804.03848v2
Fri, 25 May 2018

16:00 - 17:00
L1

North meets South Colloquium

Claudia Scheimbauer and Alberto Paganini
Abstract

Claudia Scheimbauer

Title: Quantum field theory meets higher categories

Abstract: Studying physics has always been a driving force in the development of many beautiful pieces of mathematics in many different areas. In the last century, quantum field theory has been a central such force and there have been several fundamentally different approaches using and developing vastly different mathematical tools. One of them, Atiyah and Segal's axiomatic approach to topological and conformal quantum field theories, provides a beautiful link between the geometry of "spacetimes” (mathematically described as cobordisms) and algebraic structures. Combining this approach with the physical notion of "locality" led to the introduction of the language of higher categories into the topic. The Cobordism Hypothesis classifies "fully local" topological field theories and gives us a recipe to construct examples thereof by checking certain algebraic conditions generalizing the existence of the dual of a vector space. I will give an introduction to the topic and very briefly mention on my own work on these "extended" topological field theories.

Alberto Paganini

Title: Shape Optimization with Finite Elements

Abstract: Shape optimization means looking for a domain that minimizes a target cost functional. Such problems are commonly solved iteratively by constructing a minimizing sequence of domains. Often, the target cost functional depends on the solution to a boundary value problem stated on the domain to be optimized. This introduces the difficulty of solving a boundary value problem on a domain that changes at each iteration. I will suggest how to address this issue using finite elements and conclude with an application from optics.

Fri, 11 May 2018

16:00 - 17:00
L1

Teaching Mindsets

Vicky Neale
Abstract

Research suggests that students with a 'growth mindset' may do better than those with a 'fixed mindset'.

  • What does that mean for our teaching?
  • How can we support students to develop a growth mindset?
  • What sorts of mindsets do we ourselves have?
  • And how does that affect our teaching and indeed the rest of our work?
Fri, 27 Apr 2018

16:00 - 17:00
L1

North meets South Colloquium

Jan Sbierski and Andrew Krause
Abstract

Jan Sbierski

Title: On the unique evolution of solutions to wave equations

Abstract: An important aspect of any physical theory is the ability to predict the future of a system in terms of an initial configuration. This talk focuses on wave equations, which underlie many physical theories. We first present an example of a quasilinear wave equation for which unique predictability in fact fails and then turn to conditions which guarantee predictability. The talk is based on joint work with Felicity Eperon and Harvey Reall.

Andrew Krause

Title: Surprising Dynamics due to Spatial Heterogeneity in Reaction-Diffusion Systems

Abstract: Since Turing's original work, Reaction-Diffusion systems have been used to understand patterning processes during the development of a variety of organisms, as well as emergent patterns in other situations (e.g. chemical oscillators). Motivated by understanding hair follicle formation in the developing mouse, we explore the use of spatial heterogeneity as a form of developmental tuning of a Turing pattern to match experimental observations of size and wavelength modulation in embryonic hair placodes. While spatial heterogeneity was nascent in Turing's original work, much work remains to understand its effects in Reaction-Diffusion processes. We demonstrate novel effects due to heterogeneity in two-component Reaction-Diffusion systems and explore how this affects typical spatial and temporal patterning. We find a novel instability which gives rise to periodic creation, translation, and destruction of spikes in several classical reaction-diffusion systems and demonstrate that this periodic spatiotemporal behaviour appears robustly away from Hopf regimes or other oscillatory instabilities. We provide some evidence for the universal nature of this phenomenon and use it as an exemplar of the mostly unexplored territory of explicit heterogeneity in pattern formation.
 

Tue, 05 Jun 2018

16:00 - 17:00
L5

Counting rational points and iterated polynomial equations

Harry Schmidt
(Manchester University)
Abstract

In joint work with Gareths Boxall and Jones we prove a poly-logarithmic bound for the number of rational points on the graph of functions on the disc that exhibit a certain decay. I will present an application of this counting theorem to the arithmetic of dynamical systems. It concerns fields generated by the solutions of equations of the form $P^{\circ n}(z) = P^{\circ n}(y)$ for a polynomial $P$ of degree $D \geq 2$ where $y$ is a fixed algebraic number. The general goal is to show that the degree of such fields grows like a power of $D^n$.    

Tue, 24 Apr 2018

14:00 - 14:30
L3

Block preconditioners for non-isothermal flow through porous media

Thomas Roy
(Oxford)
Abstract

In oil and gas reservoir simulation, standard preconditioners involve solving a restricted pressure system with AMG. Initially designed for isothermal models, this approach is often used in the thermal case. However, it does not incorporate heat diffusion or the effects of temperature changes on fluid flow through viscosity and density. We seek to develop preconditioners which consider this cross-coupling between pressure and temperature. In order to study the effects of both pressure and temperature on fluid and heat flow, we first consider a model of non-isothermal single phase flow through porous media. By focusing on single phase flow, we are able to isolate the properties of the pressure-temperature subsystem. We present a numerical comparison of different preconditioning approaches including block preconditioners.

Mon, 30 Apr 2018
12:45
L3

Algebraic systems biology: comparing models and data.

Heather Harrington
(Oxford)
Abstract

I will overview my research for a general math audience.

 First I will present the biological questions and motivate why systems biology needs computational algebraic biology and topological data analysis. Then I will present the mathematical methods I've developed to study these biological systems. Throughout I will provide examples.

 
 
Mon, 28 May 2018
12:45
L3

Modular properties of supersttring scattering amplitudes,

Michael Green
(Cambridge and QMUL)
Abstract

The coefficients of the low energy expansion of closed string amplitudes transform as automorphic functions under En(Z) U-duality groups.
 The seminar will give an overview of some features of the coefficients of low order terms in this expansion, which involve a fascinating interplay between multiple zeta values and certain elliptic and hyperelliptic generalisations, Langlands Eisenstein series for the En groups, and the ultraviolet behaviour of maximally supersymmetric supergravity. 

 
Subscribe to