16:00
Probabilistic arithmetic geometry
Abstract
A famous theorem due to Erdős and Kac states that the number of prime divisors of an integer N behaves like a normal distribution. In this talk we consider analogues of this result in the setting of arithmetic geometry, and obtain probability distributions for questions related to local solubility of algebraic varieties. This is joint work with Efthymios Sofos.
16:00
The fundamental theorem of Weil II (for curves) with ultra product coefficients
Abstract
l-adic cohomology was built to provide an etale cohomology with coefficients in a field of characteristic 0. This, via the Grothendieck trace formula, gives a cohomological interpretation of L-functions - a fundamental tool in Deligne's theory of weights developed in Weil II. Instead of l-adic coefficients one can consider coefficients in ultra products of finite fields. I will state the fundamental theorem of Weil II for curves in this setting and explain briefly what are the difficulties to overcome to adjust Deligne's proof. I will then discuss how this ultra product variant of Weil II allows to extend to arbitrary coefficients previous results of Gabber and Hui, Tamagawa and myself for constant $\mathbb{Z}_\ell$-coefficients. For instance, it implies that, in an $E$-rational compatible system of smooth $\overline{\mathbb{Q}}_\ell$-sheaves all what is true for $\overline{\mathbb{Q}}_\ell$-coefficients (semi simplicity, irreducibility, invariant dimensions etc) is true for $\overline{\mathbb{F}}_\ell$-coefficients provided $\ell$ is large enough or that the $\overline{\mathbb{Z}}_\ell$-models are unique with torsion-free cohomology provided $\ell$ is large enough.
17:00
A computer search for ribbon alternating links
Abstract
I will report on a joint project with Frank Swenton whose goal is to develop an algorithm to determine whether an alternating knot is ribbon. We can’t do this yet but we have an algorithm that has been remarkably, and indeed mysteriously, successful in finding a great deal of new slice knots.
15:45
Higher algebra and arithmetic
Abstract
This talk concerns a twenty-thousand-year old mistake: The natural numbers record only the result of counting and not the process of counting. As algebra is rooted in the natural numbers, the higher algebra of Joyal and Lurie is rooted in a more basic notion of number which also records the process of counting. Long advocated by Waldhausen, the arithmetic of these more basic numbers should eliminate denominators. Notable manifestations of this vision include the Bökstedt-Hsiang-Madsen topological cyclic homology, which receives a denominator-free Chern character, and the related Bhatt-Morrow-Scholze integral p-adic Hodge theory, which makes it possible to exploit torsion cohomology classes in arithmetic geometry. Moreover, for schemes smooth and proper over a finite field, the analogue of de Rham cohomology in this setting naturally gives rise to a cohomological interpretation of the Hasse-Weil zeta function by regularized determinants as envisioned by Deninger.
15:45
A new anomaly in 2d chiral conformal field theory
Abstract
Fix a loop group LG, a level k∈ℕ, and let Repᵏ(LG) be corresponding category of positive energy representations.
For any pair of pants Σ (with complex structure in the interior and parametrized boundary), there is an associated functor Repᵏ(LG) × Repᵏ(LG) → Repᵏ(LG): (H,K) ↦ H⊠K, called the fusion product.
It had been widely expected (but never proven) that this operation should be unitary. Namely, that the choice of LG-invariant inner products on H and on K should induce an LG-invariant inner product on H⊠K. We show that this is not the case: there is an anomaly.
More precisely, there is an ℝ₊-torsor canonically associated to Σ. It is only after trivialising of this ℝ₊-torsor that the fusion product acquires an LG-invariant inner product. (The same statement applies when Σ is an arbitrary Riemann surface with boundary.)
Joint work with James Tener.
15:45
Higher categories of higher categories
Abstract
I will discuss ongoing work aimed at constructing higher categories of (enriched) higher categories. This should give the appropriate targets for many interesting examples of extended topological quantum field theories, including extended versions of the classical examples of TQFTs due to Turaev-Viro, Reshetikhin-Turaev, etc.