Mon, 27 Nov 2017

14:15 - 15:15
L3

A Hopf-Lax splitting approximation for quasilinear parabolic PDEs with convex and quadratic growth gradients

GECHUN LIANG
(University of Warwick)
Abstract

We propose a new splitting algorithm to solve a class of quasilinear PDEs with convex and quadratic growth gradients. 

By splitting the original equation into a linear parabolic equation and a Hamilton-Jacobi equation, we are able to solve both equations explicitly. 

In particular, we solve the associated Hamilton-Jacobi equation by the Hopf-Lax formula, 

and interpret the splitting algorithm as a stochastic Hopf-Lax approximation of the quasilinear PDE.  

We show that the numerical solution will converge to the viscosity solution of the equation.  

The upper bound of the convergence rate is proved based on Krylov's shaking coefficients technique, 

while the lower bound is proved based on Barles-Jakobsen's optimal switching approximation technique. 

Based on joint work with Shuo Huang and Thaleia Zariphopoulou.

 

Mon, 20 Nov 2017

15:45 - 16:45
L3

Detecting early signs of depressive and manic episodes in patients with bipolar disorder using the signature-based model

ANDREY KORMILITZIN
(University of Oxford)
Abstract

Recurrent major mood episodes and subsyndromal mood instability cause substantial disability in patients with bipolar disorder. Early identification of mood episodes enabling timely mood stabilisation is an important clinical goal. The signature method is derived from stochastic analysis (rough paths theory) and has the ability to capture important properties of complex ordered time series data. To explore whether the onset of episodes of mania and depression can be identified using self-reported mood data.

Mon, 20 Nov 2017

14:15 - 15:15
L3

SLE and Rough Paths Theory

VLAD MARGARINT
(University of Oxford)
Abstract

In this talk, I am going to report on some on-going research at the interface between Rough Paths Theory and Schramm-Loewner evolutions (SLE). In this project, we try to adapt techniques from Rough Differential Equations to the study of the Loewner Differential Equation. The main ideas concern the restart of the backward Loewner differential equation from the singularity in the upper half plane. I am going to describe some general tools that we developed in the last months that lead to a better understanding of the dynamics in the closed upper half plane under the backward Loewner flow.
Joint work with Prof. Dmitry Belyaev and Prof. Terry Lyons

Mon, 13 Nov 2017

15:45 - 16:45
L3

Lie-Butcher series and rough paths on homogeneous manifolds I+II

KURUSCH EBRAHIMI-FARD
(NTNU Trondheim)
Abstract

Abstract: Butcher’s B-series is a fundamental tool in analysis of numerical integration of differential equations. In the recent years algebraic and geometric understanding of B-series has developed dramatically. The interplay between geometry, algebra and computations reveals new mathematical landscapes with remarkable properties. 

The shuffle Hopf algebra,  which is fundamental in Lyons’s groundbreaking work on rough paths,  is based on Lie algebras without additional properties.  Pre-Lie algebras and the Connes-Kreimer Hopf algebra are providing algebraic descriptions of the geometry of Euclidean spaces. This is the foundation of B-series and was used elegantly in Gubinelli’s theory of Branched Rough Paths. 
Lie-Butcher theory combines Lie series with B-series in a unified algebraic structure based on post-Lie algebras and the MKW Hopf algebra, which is giving algebraic abstractions capturing the fundamental geometrical properties of Lie groups, homogeneous spaces and Klein geometries. 

In these talks we will give an introduction to these new algebraic structures. Building upon the works of Lyons, Gubinelli and Hairer-Kelly, we will present a new theory for rough paths on homogeneous spaces built upon the MKW Hopf algebra.

Joint work with: Charles Curry and Dominique Manchon

Mon, 13 Nov 2017

14:15 - 15:15
L3

Lie-Butcher series and rough paths on homogeneous manifolds I+II

HANS MUNTHE-KASS
(Bergen University)
Abstract

Abstract: Butcher’s B-series is a fundamental tool in analysis of numerical integration of differential equations. In the recent years algebraic and geometric understanding of B-series has developed dramatically. The interplay between geometry, algebra and computations reveals new mathematical landscapes with remarkable properties. 

The shuffle Hopf algebra,  which is fundamental in Lyons’s groundbreaking work on rough paths,  is based on Lie algebras without additional properties.  Pre-Lie algebras and the Connes-Kreimer Hopf algebra are providing algebraic descriptions of the geometry of Euclidean spaces. This is the foundation of B-series and was used elegantly in Gubinelli’s theory of Branched Rough Paths. 
Lie-Butcher theory combines Lie series with B-series in a unified algebraic structure based on post-Lie algebras and the MKW Hopf algebra, which is giving algebraic abstractions capturing the fundamental geometrical properties of Lie groups, homogeneous spaces and Klein geometries. 

In these talks we will give an introduction to these new algebraic structures. Building upon the works of Lyons, Gubinelli and Hairer-Kelly, we will present a new theory for rough paths on homogeneous spaces built upon the MKW Hopf algebra.

Joint work with: Charles Curry and Dominique Manchon

 

Mon, 06 Nov 2017

15:45 - 16:45
L3

Karhunen Loeve expansions in regularity structures.

SINA NEJAD
(University of Oxford)
Abstract

We consider L^2-approximations of white noise within the framework of regularity structures. Possible applications include support theorems for SPDEs driven by degenerate noises and numerics. Joint work with Ilya Chevyrev, Peter Friz and Tom Klose. 

Mon, 06 Nov 2017

14:15 - 15:15
L3

Volume distribution of nodal domains of random band-limited functions

IGOR WIGMAN
(Kings College London)
Abstract

This talk is based on a joint work with Dmitry Beliaev.

We study the volume distribution of nodal domains of families of naturally arising Gaussian random field on generic manifolds, namely random band-limited functions. It is found that in the high energy limit a typical instance obeys a deterministic universal law, independent of the manifold. Some of the basic qualitative properties of this law, such as its support, monotonicity and continuity of the cumulative probability function, are established.

Mon, 30 Oct 2017

15:45 - 16:45
L3

Statistics and Rough Paths

ANASTASIA PAPAVASILEIOU
(University of Warwick)
Abstract

Having made sense of differential equations driven by rough paths, we now have a new set of models available but when it comes to calibrating them to data, the tools are still underdeveloped. I will present some results and discuss some challenges related to building these tools.

Mon, 30 Oct 2017

14:15 - 14:45
L3

Loewner equation driven by complex-valued driving functions

HUY TRAN
(UCLA/TU Berlin)
Abstract

Consider the Loewner equation associated to the upper-half plane. This is an equation originated from an extremal problem in complex analysis. Nowadays, it attracts a lot of attention due to its connection to probability. Normally this equation is driven by a real-valued function. In this talk, we will show that the equation still makes sense when being driven by a complex-valued function. We will relate this situation to the classical situation and also to complex dynamics. 

Mon, 23 Oct 2017

15:45 - 16:45
L3

The signature approach for the supervised learning problem with sequential data input and its application

Hao Ni
(University College London)
Abstract

In the talk, we discuss how to combine the recurrent neural network with the signature feature set to tackle the supervised learning problem where the input is a data stream. We will apply this method to different datasets, including the synthetic datasets( learning the solution to SDEs ) and empirical datasets(action recognition) and demonstrate the effectiveness of this method.

 

Subscribe to