Mon, 14 May 2018
15:45
L6

Lie groupoids and index theory

Georges Skandalis
(Paris VII)
Abstract

My talk is based on joint work with Claire Debord (Univ. Auvergne).
We will explain why Lie groupoids are very naturally linked to Atiyah-Singer index theory.
In our approach -originating from ideas of Connes, various examples of Lie groupoids
- allow to generalize index problems,
- can be used to construct the index of pseudodifferential operators without using the pseudodifferential calculus,
- give rise to proofs of index theorems, 
- can be used to construct the pseudodifferential calculus.

Fri, 23 Feb 2018

12:00 - 13:00
N3.12

Local homology and stratification

Tadas Temcinas
(University of Oxford)
Abstract

I will present Vidit Nanda's paper "Local homology and stratification" (https://arxiv.org/abs/1707.00354), and briefly explain how in my master thesis I am applying ideas from the paper to study word embedding problems.


Abstract of the paper:  We outline an algorithm to recover the canonical (or, coarsest) stratification of a given regular CW complex into cohomology manifolds, each of which is a union of cells. The construction proceeds by iteratively localizing the poset of cells about a family of subposets; these subposets are in turn determined by a collection of cosheaves which capture variations in cohomology of cellular neighborhoods across the underlying complex. The result is a finite sequence of categories whose colimit recovers the canonical strata via (isomorphism classes of) its objects. The entire process is amenable to efficient distributed computation.
 

Tue, 06 Mar 2018
14:15
L4

Morita equivalence of Peter-Weyl Iwahori algebras

Allen Moy
(Hong Kong University of Science and Technology)
Abstract

The Peter-Weyl idempotent of a parahoric subgroup is the sum of the idempotents of irreducible representations which have a nonzero Iwahori fixed vector. The associated convolution algebra is called a Peter-Weyl Iwahori algebra.  We show any Peter-Weyl Iwahori algebra is Morita equivalent to the Iwahori-Hecke algebra.  Both the Iwahori-Hecke algebra and a Peter-Weyl Iwahori algebra have a natural C*-algebra structure, and the Morita equivalence preserves irreducible hermitian and unitary modules.  Both algebras have another anti-involution denoted as •, and the Morita equivalence preserves irreducible and unitary modules for the • involution.   This work is joint with Dan Barbasch.
 

Thu, 08 Mar 2018

17:15 - 18:15
L1

Alain Goriely - Can Mathematics Understand the Brain?

Alain Goriely
((Oxford University))
Abstract

Oxford Mathematics Public Lectures

Can Mathematics Understand the Brain?' - Alain Goriely

The human brain is the object of the ultimate intellectual egocentrism. It is also a source of endless scientific problems and an organ of such complexity that it is not clear that a mathematical approach is even possible, despite many attempts. 

In this talk Alain will use the brain to showcase how applied mathematics thrives on such challenges. Through mathematical modelling, we will see how we can gain insight into how the brain acquires its convoluted shape and what happens during trauma. We will also consider the dramatic but fascinating progression of neuro-degenerative diseases, and, eventually, hope to learn a bit about who we are before it is too late. 

Alain Goriely is Professor of Mathematical Modelling, University of Oxford and author of 'Applied Mathematics: A Very Short Introduction.'

March 8th, 5.15 pm-6.15pm, Mathematical Institute, Oxford

Please email @email to register

Tue, 13 Feb 2018
14:30
L6

On the hard sphere model and sphere packing in high dimensions

Matthew Jenssen
(Oxford University)
Abstract

We give an alternative, statistical physics based proof of the Ω(d2^{-d}) lower bound for the maximum sphere packing density in dimension d by showing that a random configuration from the hard sphere model has this density in expectation. While the leading constant we achieve is not the best known, we do obtain additional geometric information: we prove a lower bound on the entropy density of sphere packings at this density, a measure of how plentiful such packings are. This is joint work with Felix Joos and Will Perkins.

Wed, 07 Feb 2018

16:00 - 17:00
C5

Flats in CAT(0) spaces

Sam Shepherd
(University of Oxford)
Abstract

CAT(0) spaces are defined as having triangles that are no fatter than Euclidean triangles, so it is no surprise that under special conditions  you find pieces of the Euclidean plane appearing in CAT(0) spaces. What is surprising though is how weak these special conditions seem to be. I will present some well known results of this phenomenon, along with detailed sketch proofs.

Tue, 05 Jun 2018

15:45 - 16:45
L4

Ordinary K3 surfaces over finite fields

Lenny Taelman
(University of Amsterdam)
Abstract

We give a description of the category of ordinary K3 surfaces over a finite field in terms of linear algebra data over Z. This gives an analogue for K3 surfaces of Deligne's description of the category of ordinary abelian varieties over a finite field, and refines earlier work by N.O. Nygaard and J.-D. Yu. Two important ingredients in the proof are integral p-adic Hodge theory, and a description of CM points on Shimura stacks in terms of associated Galois representations. References: arXiv:1711.09225, arXiv:1707.01236.

Mon, 19 Feb 2018
12:45
L3

The decay width of stringy hadrons

Cobi Sonnenschein
(Tel Aviv)
Abstract

I will start with briefly describing the HISH ( Holography Inspired Hadronic String) model and reviewing the fits of the spectra of mesons, baryons, glue-balls and exotic hadrons. 

I will present the determination of the hadron strong decay widths. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as $\Gamma =\frac{\pi}{2}A T L $ where T and L are the tension and length of the string and A is a dimensionless universal constant. The partial width of a given decay mode is given by $\Gamma_i/\Gamma = \Phi_i \exp(-2\pi C m_\text{sep}^2/T$ where $\Phi_i$ is a phase space factor, $m_\text{sep}$ is the mass of the "quark" and "antiquark" created at the splitting point, and C is adimensionless coefficient close to unity. I will show the fits of the theoretical results to experimental data for mesons and baryons. I will examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons $A = 0.095\pm  0.01$  is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. I will discuss the relation with string fragmentation and jet formation. I will extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia will be proposed and will be shown to reproduce the decay width of  states. The dependence of the width on spin and symmetry will be discussed. I will further apply this model to the decays of glueballs and exotic hadrons.

 

 
 
 
Mon, 12 Feb 2018
12:45
L3

Universality at large transverse spin in defect CFT

Pedro Liendo
(DESY, Hamburg)
Abstract

We study the spectrum of local operators living on a defect in a generic conformal field theory, and their coupling to the local bulk operators. We establish the existence of universal accumulation points in the spectrum at large s, s being the charge of the operators under rotations in the space transverse to the defect. Our main result is a formula that inverts the bulk to defect OPE, analogous to the Caron-Huot formula for the four-point function of CFTs without defects.

 
Subscribe to