Thu, 06 Nov 2014

12:00 - 13:00
L4

Towards an effective theory for nematic elastomers in a membrane limit

Paul Plucinsky
(Caltech)
Abstract
 

For nematic elastomers in a membrane limit, one expects in the elastic theory an interplay of material and structural non-linearities. For instance, nematic elastomer material has an associated anisotropy which allows for the formation of microstructure via nematic reorientation under deformation. Furthermore, polymeric membrane type structures (of which nematic elastomer membranes are a type) often wrinkle under applied deformations or tractions to avoid compressive stresses. An interesting question which motivates this study is whether the formation of microstructure can suppress wrinkling in nematic elastomer membranes for certain classes of deformation. This idea has captured the interest of NASA as they seek lightweight and easily deployable space structures, and since the use of lightweight deployable membranes is often limited by wrinkling.

 

In order to understand the interplay of these non-linearities, we derive an elastic theory for nematic elastomers of small thickness. Our starting point is three-dimensional elasticity, and for this we incorporate the widely used model Bladon, Terentjev and Warner for the energy density of a nematic elastomer along with a Frank elastic penalty on nematic reorientation. We derive membrane and bending limits taking the thickness to zero by exploiting the mathematical framework of Gamma-convergence. This follows closely the seminal works of LeDret and Raoult on the membrane theory and Friesecke, James and Mueller on the bending theory.

 

Thu, 23 Oct 2014

12:00 - 13:00
L4

J.C. Maxwell's 1879 Paper on Thermal Transpiration and Its Relevance to Contemporary PDE

Marshall Slemrod
(University of Wisconsin - Madison)
Abstract
In his 1879 PRSL paper on thermal transpiration J.C.MAXWELL addressed the problem of steady flow of a dilute gas over a flat boundary. The experiments of KUNDT and WARBURG had demonstrated that if the boundary is heated with a temperature gradient , say increasing from left to right, the gas will flow from left to right. On the other hand MAXWELL using the continuum mechanics of his (and indeed our) day solved the ( compressible) NAVIER- STOKES- FOURIER equations for balance of mass, momentum, and energy and found a solution: the gas has velocity equal zero. The Japanese fluid mechanist Y. SONE has termed this the incompleteness of fluid mechanics. In this talk I will sketch MAXWELL's program and how it suggests KORTEWEG's 1904 theory of capillarity to be a reasonable “ completion” of fluid mechanics. Then to push matters in the analytical direction I will suggest that these results show that HILBERT's 1900 goal expressed in his 6th problem of passage from the BOLTZMANN equation to the EULER equations as the KNUDSEN number tends to zero in unattainable.
From Oxford mathematicians to the Oxford Mathematics Alphabet we hope these posters will inspire you and your students and brighten up your classroom walls.
Thu, 20 Nov 2014

16:00 - 17:00
L5

On Roth's theorem on arithmetic progression

Thomas Bloom
(Bristol)
Abstract

In 1953 Roth proved that any positive density subset of the integers contains a non-trivial three term arithmetic progression. I will present a recent quantitative improvement for this theorem, give an overview of the main ideas of the proof, and discuss its relation to other recent work in the area. I will also discuss some closely related problems. 

Thu, 13 Nov 2014

16:00 - 17:00
L5

Sieving very thin sets of primes

Kevin Ford
(The University of Illinois at Urbana-Champaign)
Abstract

We discuss a new method to bound the number of primes in certain very thin sets. The sets $S$ under consideration have the property that if $p\in S$ and $q$ is prime with $q|(p-1)$, then $q\in S$. For each prime $p$, only 1 or 2 residue classes modulo $p$ are omitted, and thus the traditional small sieve furnishes only the bound $O(x/\log^2 x)$ (at best) for the counting function of $S$. Using a different strategy, one related to the theory of prime chains and Pratt trees, we prove that either $S$
contains all primes or $\# \{p\in S : p\le x \} = O(x^{1-c})$ for some positive $c$. Such sets arise, for example, in work on Carmichael's conjecture for Euler's function.

Thu, 16 Oct 2014

16:00 - 17:00
L5

THE STRUCTURE OF J_0(N)[m] AT AN EISENSTEIN PRIME m

Hwajong Yoo
(University of Luxembourg)
Abstract

In this talk, we will discuss the dimension of $J_0(N)[m]$ at an Eisenstein prime m for
square-free level N. We will also study the structure of $J_0(N)[m]$ as a Galois module.
This work generalizes Mazur’s work on Eisenstein ideals of prime level to the case of
arbitrary square-free level up to small exceptional cases.

Thu, 06 Nov 2014

16:00 - 17:00
L5

Symmetric power functoriality for GL(2)

Jack Thorne
(Cambridge)
Abstract

Let f be an elliptic modular newform of weight at least 2. The 
problem of the automorphy of the symmetric power L-functions of f is a 
key example of Langlands' functoriality conjectures. Recently, the 
potential automorphy of these L-functions has been established, using 
automorphy lifting techniques, and leading to a proof of the Sato-Tate 
conjecture. I will discuss a new approach to the automorphy of these 
L-functions that shows the existence of Sym^m f for m = 1,...,8.

Fri, 05 Dec 2014

14:15 - 15:15
C1

Marine-ice formation and the perils of scaling analysis.

David Rees-Jones
(AOPP University of Oxford)
Abstract

Marine-ice formation occurs on a vast range of length scales: from millimetre scale frazil crystals, to consolidated sea ice a metre thick, to deposits of marine ice under ice shelves that are hundreds of kilometres long. Scaling analyses is therefore an attractive and powerful technique to understand and predict phenomena associated with marine-ice formation, for example frazil crystal growth and the convective desalination of consolidated sea ice. However, there are a number of potential pitfalls arising from the assumptions implicit in the scaling analyses. In this talk, I tease out the assumptions relevant to these examples and test them, allowing me to derive simple conceptual models that capture the important geophysical mechanisms affecting marine-ice formation. 

Fri, 21 Nov 2014

14:15 - 15:15
C1

Modelling Volcanic Plumes

Mark Woodhouse
(University of Bristol)
Abstract

Explosive volcanic eruptions often produce large amounts of ash that is transported high into the atmosphere in a turbulent buoyant plume.  The ash can be spread widely and is hazardous to aircraft causing major disruption to air traffic.  Recent events, such as the eruption of Eyjafjallajokull, Iceland, in 2010 have demonstrated the need for forecasts of ash transport to manage airspace.  However, the ash dispersion forecasts require boundary conditions to specify the rate at which ash is delivered into the atmosphere.

 

Models of volcanic plumes can be used to describe the transport of ash from the vent into the atmosphere.  I will show how models of volcanic plumes can be developed, building on classical fluid mechanical descriptions of turbulent plumes developed by Morton, Taylor and Turner (1956), and how these are used to determine the volcanic source conditions.  I will demonstrate the strong atmospheric controls on the buoyant plume rise.  Typically steady models are used as solutions can be obtained rapidly, but unsteadiness in the volcanic source can be important.  I'll discuss very recent work that has developed unsteady models of volcanic plumes, highlighting the mathematical analysis required to produce a well-posed mathematical description.

Subscribe to